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 Abstract   All previous research involving search for a moving 
target focuses on a single searcher.   We develop an optimal 
branch and bound procedure and six heuristics for moving 
target constrained path problems with multiple searchers.   Our 
optimal procedure outperforms existing approaches for single 
searcher problems.   For more than one searcher, the time 
needed to guarantee an optimal solution is prohibitive.   Our 
heuristics represent a wide variety of approaches and consist of 
one based on solving partial problems optimally, two based on 
the expected number of detections, two genetic algorithm 
implementations, and local search.   A heuristic based on the 
expected number of detections obtains solutions within two 
percent of the best known for each one, two, and three searcher 
test problem considered.   For one and two searcher problems, 
the same heuristic’s solution time is less than that of other 
heuristics.   A genetic algorithm implementation performs 
acceptably for one and two searcher problems and highlights its 
ability, effectively solving three searcher problems in as little as 
20% of other heuristic run-times. 
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SOLVING CONSTRAINED PATH, MOVING TARGET 
 SEARCH PROBLEMS USING MULTIPLE SEARCHERS 
 
We extend the single searcher model proposed by Eagle and 
Yee (1990) to multiple searchers.   Both single and multiple 
searcher models use discrete time with a single target’s 
motion modeled as a Discrete Time Markov Chain.   The 
target is constrained to a single cell within a grid each time 
period, and has its movement alternatives, between time 
steps, restricted to adjacent cells.   The initial probability 
distribution for the target and the target’s Markovian 
transition matrix are known. 
 The initial position(s) for the searcher(s) has to be 
specified.   The searcher(s) has the same type of movement 
restriction as the target and a limited time to search.   The 
search path’s effectiveness is the cumulative probability of 
detection along the searcher’s path(s) where detection occurs 
with a specified probability when the searcher and target 
occupy the same cell.   Our implementation allows more than 
one searcher to searcher to search the same location at the 
same time.   The random search law is used, which allows the 
detection rates of each searcher to be added.   Each time 
period, the probability distribution for the target throughout 
the area is Bayesian updated for no-detection. 

 An appropriate formulation for the multiple searcher 
problem, an extension of the single searcher problem of 
Eagle and Yee (1990), follows the introduction of notation. 
 

• Indices: 
  * i, i’,k cell, 
  * j searcher, 
  * t time step (t = 1,2,...,T), 
  * ω path (where ω(t) is the cell occupied at 
time t). 

• Data: 
  * αij detection rate for searcher j in cell i. 

The probability of detection in a given cell is 1 - 
exp(-αij), 

  * Ω set of all feasible target paths, 
  * Ci set of cells adjacent to cell i, 
  * pω probability of target following path ω, 
  * sj starting cell for searcher j at time zero. 

• Binary Variables: 
  * xi, ω(t),j,t = 1 if searcher j moves from cell i 

at time t-1 to cell ω(t) at time t and 0 otherwise. 
• Formulation: 
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 The formulation maximizes the probability of 
detection (PD), within the set of feasible paths Ω, subject to 
the constraints: 
 (1) Each searcher’s initial search effort (t=1) must be 
in a cell adjacent to the starting position; 
 (2) Each searcher can move at most once between 
time periods.   Since the maximum objective function value is 
sought, the exclusion of this constraint could result in 
multiple paths for each searcher; 
 



 (3) All search effort has to be done within the set of 
adjacent cells, at any time step, for any given searcher. 
 Trummel and Weisinger (1986) show the path 
constrained search problem for a stationary target is NP-
Complete.   An example highlights the problem’s complexity.   
A single searcher using five time steps to search a nine cell 
problem has approximately 1,000 feasible paths to choose 
from.   The same problem with 10 time steps has about 
1,000,000 feasible paths.   This problem with three searchers 
has about 1.0 E18 feasible paths.   The path constrained 
search problem for a moving target with multiple searchers is 
at least as hard, and by being so, the main thrust of this paper 
is the development, testing, and evaluation of relatively fast 
and robust heuristics.   The heuristics considered are: one 
based on solving partial problems optimally, two based on 
the expected number of detections, a genetic algorithm, a 
hybrid genetic algorithm that incorporates other heuristics, 
and local search.   This paper also develops an optimal 
branch and bound procedure which outperforms other 
optimal procedures reported in the literature for one searcher 
problems. 
 

SEARCH PROBLEMS AND MOTIVATION 
 

 The Operations Research literature contains 
numerous books and published articles on stationary target 
problems.   The consensus of the research community is that 
the framework for these problems was laid down by the 1942 
United States Navy Antisubmarine Warfare Research Group 
in response to the Atlantic German submarine threat 
(Koopman (1946)).   Subsequent work by many researchers 
took the stationary target problems into a mature state where 
solutions are available for the most common problems and 
improvements are hard to find (Stone(1975)). 
 The case for a lone searcher of a lone searcher 
looking for a single moving target has also been widely 
studied and can be divided into two major classes: Two-sided 
search and one-sided search. 
 Two-sided search problems consider situations 
where the target is aware that a search effort is being carried 
out against him and attempts to avoid detection or capture.   
Game theory is the natural tool here (see Thomas and 
Washburn (1991), and Eagle and Washburn (1991)).   One-
sided search problems assume either the target is not aware of 
the search or the target needs to accomplish its own task and 
it is not willing to evade the searcher.   Through this 
reasoning idea of a Bayesian probability distribution and 
update of the target’s position is straightforward.   The one-
sided search problems are usually further divided as Optimal 
Density or Optimal path problems.   Both groups in more 
recent work have dealt with the target motion being modeled 
as a Discrete Time Markov Chain and the “continuous 
search” in each time step being modeled by an exponential 
law of detection. 
 Optimal density problems tend to be easier problems 
than optimal path problems since integrality or adjacent 
movement constraints can be dropped.   These problems are 
well suited to situations when the searcher and target speeds 
differ by more than an order of magnitude.   Brown (1980) 
made important progress in optimal density problems by 
developing an algorithm that solves the moving target 
problem as a sequence of stationary target problems. 

Washburn (1980) gave a counterpart algorithm for the 
discrete search effort case as did Stone et. Al. (1978). 
 Optimal path problems with the characteristics 
described above are tackled by Stewart (1979) and (1980) 
using an optimal branch and bound procedure.   Eagle and 
Yee’s (1990) branch and bound procedure obtains bounds by 
using the Frank-Wolfe algorithm to solve a subproblem 
where integrality restrictions are relaxed. 
 Another interesting model for Optimal Path 
Problems is the continuous time and space case where the 
constraints on the searcher’s motion are given by a set of 
differential equations that the searcher’s path has to obey.   
Oshumi (1991) is a good example of such a model. 
 According to the survey by Weisinger, Monticino 
and Benkoski (1991), 125 references are available for one-
sided search problems and 61 to search games but none are 
listed for multiple searchers or team effort under the same 
modeling assumptions.   This paper considers moving target 
constrained path problems with multiple searchers. 
 
ALGORITHMS FOR MOVING TARGET CONSTRAINED 

PATH PROBLEMS WITH MULTIPLE SEARCHERS  
 

 We develop seven algorithms to determine the 
path(s) that maximizes the probability of detecting a 
randomly moving target using multiple searchers. 

1. Optimal Branch and Bound Procedure (BB) 
Two optimal branch and bound procedures exist in 

the literature for single searcher moving target constrained 
path problems.   Stewart (1979) and (1980) relaxes the 
searcher’s path constraints to obtain a lower bound.   Eagle 
and Yee (1990) maintain the path constraints, but relax the 
binary condition of the searcher’s position.   Our approach 
bounds PD above by calculating the expected number of 
detections (ED) and thus maintains both the searchers’ paths 
and the binary constraints. 

Motivation for using the path or partial path 
corresponding to the maximum ED is its equivalence to 
finding the longest path through an acyclic network.   Our 
implementation is adapted from Cormen, Leiserson and 
Rivest’s (1992) Directed Acyclic Graph Longest Path 
Algorithm which is Θ(V+E) where V is the number of 
vertices and E is the number of Edges. 
 2. Local Search (LS) 

This work includes local search (see Papadimitriou 
and Steiglitz (1982) as a benchmark of how a simple heuristic 
performs on our test problems. 
 3. Expected Detection Heuristic 1 (H1)  
 This heuristic obtains its motivation from the 
relative ease of calculating the path maximizing ED. 
 4. Expected Detection Heuristic 2 (H2)  
 This heuristics expands on H1 by basing the next 
node added to the searcher’s path according to a balance 
between ED and PD for every feasible move on each time 
step. 

5. Genetic Algorithm (GA)  
Genetic Algorithms (see Goldberg (1989) and 

Holland (1975)) are self improving algorithms that work by 
means of natural selection, or survival of the fittest. 

A characteristic of Genetic Algorithms is the need to 
set run-time parameters, such as the population size, the 
probability of cross-over, the probability of mutation, and the  



number of generations.   We automate this process in our GA 
implementation to provide values that are empirically robust 
across a variety of problems.   This, of course, may limit the 
efficiency of the algorithm for particular cases but allows the 
algorithm’s results to be more easily generalized to new 
problem instances. 

6. Hybrid Genetic Algorithm (HGA) 
 The HGA algorithm is the GA which includes in the 
starting population the three heuristic solutions produced by 
H1, H2 and the path that maximizes ED. 

7. Moving Horizon (MH) 
 The MH heuristic breaks the true problem into 
subproblems which are optimally solvable within a 
reasonable amount of computer time. 
 

PRESENTATION MOTIVATION 
 

 Even though the main thrust for development of 
efficient and effective algorithms to deal with search 
problems comes from the military community, many civilian 
applications can also benefit, such as: search for lost hikers, 
endangered animal species and shoals of fish for commercial 
reasons. 
 During the conference, we plan to present 
computational results of the algorithms developed as well as 
discuss in more detail their characteristics. 
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