CARACTERIZAÇÃO ESTRUTURAL DAS LIGAS Ti-18Si-6B E Ti-7,5Si-22,5B PROCESSADAS POR MOAGEM DE ALTA ENERGIA E PRENSAGEM A QUENTE¹

Bruno Bacci Fernandes^{1,2}, Alfeu Saraiva Ramos¹, Carlos de Moura Neto², Francisco Cristovão Lourenço de Melo³, Paulino Bacci Fernandes⁴.

Universidade do Vale do Paraíba, Av. Shishima Hifumi, 2911 – Urbanova – São José dos Campos - SP
Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, 50 – Vila das Acácias – São José dos Campos-SP
Divisão de Materiais, Praça Marechal Eduardo Gomes, 50 – Vila das Acácias – São José dos Campos-SP
Escola de Engenharia de Lorena – Pólo-Urbo Industrial, Gleba AI-6 – Lorena-SP

Resumo - Este trabalho apresenta a preparação de ligas Ti-18Si-6B e Ti-7,5Si-22,5B (%-at.) por moagem de alta energia e subseqüente prensagem a quente, a partir de pós de alta pureza. As transformações de fases ocorridas durante a moagem e após consolidação foram avaliadas com o auxílio de difração de raios X, microscopia eletrônica de varredura, e espectrometria por energia dispersiva. A existência de halos sugere a possibilidade de formação de estruturas amorfas nos pós. Após prensagem a quente, as fases $\text{Ti+Ti}_6\text{Si}_2\text{B+Ti}_5\text{Si}_3$ e $\text{Ti+Ti}_6\text{Si}_2\text{B+Ti}_6\text{Si}_3\text{B+Ti}_6\text{Si}_3\text{B+Ti}_6\text{Si}_3\text{B+Ti}_6\text{Si}_3\text{B+Ti}_6\text{Si}_3\text{B+Ti}_6\text{Si}_3\text{B+Ti}_6\text{Si$

Palavras chaves: Moagem de alta energia, ligas de titânio, fase ternária.

1. INTRODUÇÃO

O uso de estruturas multifásicas tem sido considerado como a melhor opção para o desenvolvimento de componentes estruturais aplicados em altas temperaturas. Materiais contendo fase(s) intermetálica(s) em equilíbrio com um metal ou liga refratária têm maior potencial para superar este limite [1]. Dentro desta classe de materiais são pesquisadas as ligas à base de nióbio [2], as dos sistemas Me-Si-B (Me - metal refratário - Mo, Nb e Ti) [3,4], as superligas de níquel e de ferro [1], além da liga Ti-6Al-4V [5].

Estudos envolvendo a determinação de diagramas de fases (projeção *liquidus* e seção isotérmica à 1250°C) do sistema Ti-Si-B foram recentemente realizados [1]. Neste trabalho, é observada a existência de uma fase ternária Ti₆Si₂B com composição química próxima de Ti-22,2Si-11,1B (%-at.). No caso da preparação do composto Ti₆Si₂B por técnicas convencionais de fusão a arco e metalurgia do pó, existem dificuldades para a obtenção de uma microestrutura homogênea, devido os precipitados grosseiros de TiB₂, TiB e Ti₅Si₃ formados durante o processo de solidificação, os quais atuam como barreiras de difusão. A preparação de corpos-deprova para a realização de análises mecânicas, através de processos convencionais de usinagem, também é dificultada devido à elevada dureza e à baixa ductilidade do composto Ti₆Si₂B [1].

Recentemente, pesquisas vêm sendo realizadas sobre a possibilidade da obtenção de nanoestruturas de titânio por um processo que envolve uma deformação plástica severa através do dobramento do material (*Equal Channel Angular Process*) [6]. Após o processamento, os valores de alongamento são mantidos próximos de 30%, enquanto que os valores dos

limites de escoamento e de resistência à tração são elevados em até três vezes àqueles obtidos para o titânio submetido aos tratamentos térmicos e/ou processamentos termomecânicos convencionais. Isto ocorre devido à existência de nanoestruturas metaestáveis localizadas próximas dos contornos de grão [7].

O processamento de pós por moagem de alta energia conhecido como *mechanical alloying (MA)* vem sendo empregado na preparação de materiais com homogeneidade estrutural e propriedades mecânicas superiores àqueles produzidos por técnicas convencionais de fusão a arco e metalurgia do pó [8]. No caso do sistema Ti-Si-B, estudos sobre a preparação do composto Ti₆Si₂B e de ligas bifásicas (Ti+Ti₆Si₂B e Ti₅Si₃+Ti₆Si₂B) por moagem de alta energia vêm sendo realizados [9,10].

Este trabalho apresenta a caracterização estrutural de pós Ti-18Si-6B (%-at.) e Ti-7,5Si-22,5B (%-at.) produzidos por moagem de alta energia, e de alguns destes pós consolidados por prensagem a quente.

2. MATERIAIS E MÉTODOS

Os seguintes pós de alta pureza foram utilizados na preparação das misturas de pós Ti-18Si-6B (%-at.) e Ti-7,5Si-22,5B (%-at.): Ti (99,9%-p., esférico, - 150 mesh); Si (99,999%-p., irregular, -120 mesh); e B (99,5%-p., angular, - 120 mesh). Os pós foram manipulados no interior de uma cabina tipo *glove box*, que opera com atmosfera de argônio analítico de alta pureza.

O processo de moagem foi realizado em um moinho de bolas planetário Fritsch P-5 sob atmosfera de argônio a partir de uma relação de massas esferas/pós de 10:1. Os pós foram processados mediante velocidade de 200 rpm com interrupção de 10 minutos a cada 10 minutos. As amostras para caracterização estrutural foram coletadas com 1, 10, 30, 60, 80, 120, 150, e 185/195 (Ti-18Si-6B / Ti-7,5Si-22,5B) horas de moagem.

Os pós-moídos Ti-18Si-6B e Ti-7,5Si-22,5B, foram précompactados por prensagem uniaxial durante 5 minutos e pressão de 30 MPa. Em seguida, os compactados verdes foram consolidados por prensagem uniaxial a quente sob

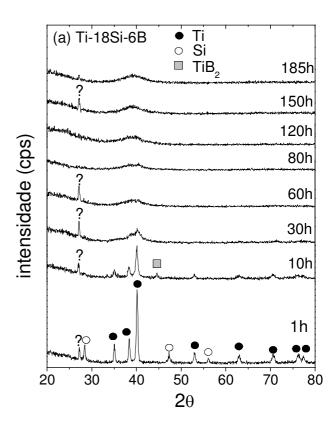
vácuo, temperatura de 900°C e pressão de 30 MPa, durante 30 minutos. Foram obtidas pastilhas com 10 mm de diâmetro por 2-5 mm de altura. Para cada mistura foram confeccionadas duas pastilhas: Ti-18Si-6B \rightarrow uma pastilha confeccionada com pós moídos por 60 horas (cdp1), e a outra pastilha foi confeccionada com uma mistura de pós moídos por 80/85 horas (cdp2); Ti-7,5Si-22,5B \rightarrow uma pastilha confeccionada com uma mistura de pós moídos por 85/120 horas (cdp3), e a outra pastilha foi confeccionada com uma mistura de pós moídos por 150/160/170 horas (cdp4).

Os materiais moídos e obtidos após prensagem a quente foram caracterizados com o auxílio de técnicas de difração de raios X (DRX), microscopia eletrônica de varredura (MEV) e microanálises por espectrometria por energia dispersiva (EDS). Os experimentos de DRX foram realizados à temperatura ambiente em um equipamento Seifert usando radiação de Cu-K \square e um filtro de níquel. Foram utilizados os dados cristalográficos das fases contidos em Pearson´s [11]. Com relação à fase ternária Ti_6Si_2B , foram utilizados os dados cristalográficos apresentados por Ramos [12]. Com o objetivo de melhorar a visualização da estrutura de algumas amostras, estas foram atacadas em solução ácida (3%-vol. de HNO $_3$ 1%-vol. de HF / 2 segundos).

A porosidade aberta e a massa específica aparente dos compactados foram medidas pelo método de Archimedes, enquanto que a porosidade fechada foi medida por análise de imagens obtidas por microscopia ótica, e com o auxílio do programa computacional IMAGE TOOL.

3. RESULTADOS

Após moagem por 185 e 195 horas, são recuperados 82,8 e 32,7% da massa inicial dos pós Ti-18Si-6B e Ti-7,5Si-22,5B, respectivamente.

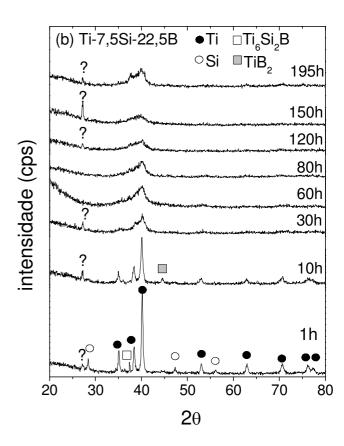
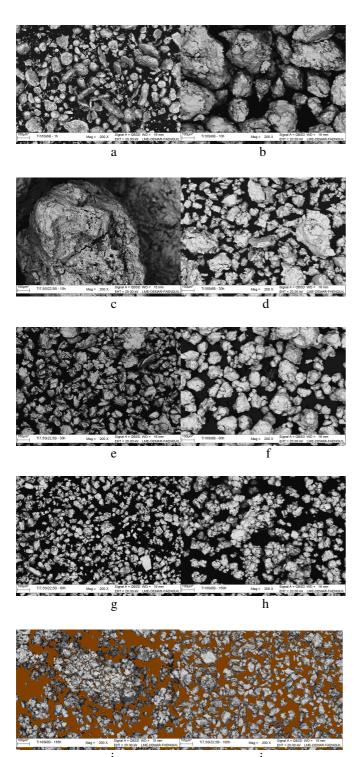

Os valores da massa específica aparente (M.E.A.) e de porosidade aberta (P.A.) e fechada (P.F.) das amostras após prensagem a quente estão listados no Quadro I.

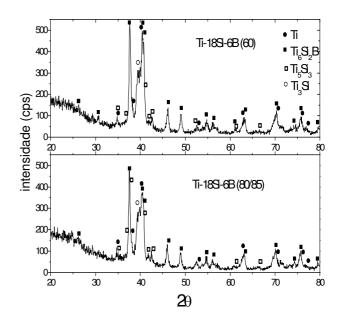
QUADRO I – POROSIDADE E MASSA ESPECÍFICA.

	P.A. (%)	P.F. (%)	M.E.A. (g/cm ³)
cdp1 (Ti-18Si-6B)	0,05	4,59	4,56
cdp2 (Ti-18Si-6B)	0,21	0,31	4,54
cdp3 (Ti-7,5Si-22,5B)	0,74	12,26	4,47
cdp4 (Ti-7,5Si-22,5B)	0,17	5,39	4,48

A Fig. 1 apresenta, respectivamente, os resultados de difração de raios X dos pós Ti-18Si-6B e Ti-7,5Si-22,5B, para diferentes tempos de moagem.

As morfologias dos pós Ti-18Si-6B e Ti-7,5Si-22,5B preparados em diferentes tempos de moagem estão apresentadas na Fig. 2.


Fig. 1 – Difratogramas dos pós (a) Ti-18Si-6B e (b) Ti-7,5Si-22,5B.

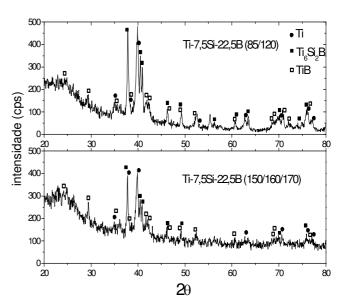
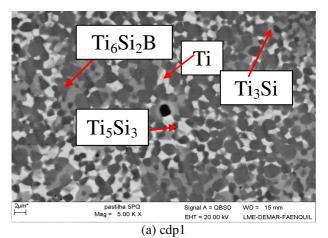


Fig. 2 – Imagens dos pós (a, b, d, f, h, i) Ti-18Si-6B e (c, e, g, j) Ti-7.5Si-22.5B, para diferentes tempos de moagem: (a) 1h, (b, c) 10h, (d, e) 30h, (f,g) 60h, (h) 150h, (i) 185h e (j) 195h.


Os difratogramas de raios X das ligas Ti-18Si-6B e Ti-7,5Si-22,5B, após processo de consolidação por prensagem a quente, são apresentados na Fig. 3.

A Fig. 4 apresenta as micrografias obtidas por MEV, das ligas Ti-18Si-6B e Ti-7,5Si-22,5B, após consolidação por prensagem a quente sob vácuo (900°C por 30 minutos e pressão de 30 MPa).

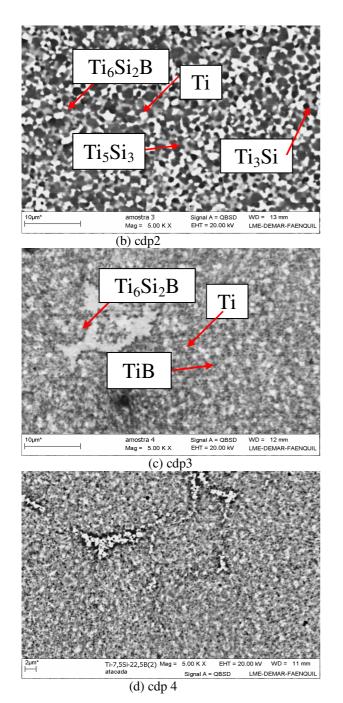


Fig. 3 - Difratogramas das ligas Ti-18Si-6B e Ti-7,5Si-22,5B prensadas a 900°C e 30 MPa por 30 minutos.

 $\begin{tabular}{ll} Fig.~4-Micrografias~(MEV)~das~ligas~(a,~b)~Ti-18Si-6B~e~(c,~d)~Ti-7,5Si-22,5B~prensadas~a~quente. \end{tabular}$

Fig. 4 – Micrografias das ligas (a, b) Ti-18Si-6B e (c, d) Ti-7,5Si-22,5B prensadas a quente. (continuação)

4. DISCUSSÃO

Os pós Ti-7,5Si-22,5B apresentam um comportamento de aderência mais intenso nos meios de moagem. A interrupção do processo de moagem a cada 10 minutos pode ter contribuído para aumentar o endurecimento por deformação das partículas de pós, pois o aumento da temperatura no interior do vaso seria controlado.

Em alguns dos difratogramas apresentados na Fig. 1 aparecem algumas interrogações sobre um pico próximo de $2\theta \cong 27^{\circ}$, os quais foram provenientes do material de alguns dos suportes de amostras utilizados nestes experimentos. A redução da intensidade e o alargamento dos picos de difração de raios X de ambos os pós ocorrem como em outras rotas de moagem [10], devido uma deformação estrutural e/ou redução

dos tamanhos das partículas. O deslocamento de picos também está relacionado com a deformação da estrutura cristalina, que é decorrente da dissolução de elementos e introdução de defeitos durante o processo de moagem.

Após 1 hora de moagem, as partículas observadas de ambas as misturas apresentam morfologias, dimensões (<180 μm), e intensidades/larguras do pico principal do titânio, muito próximas. Porém, picos adicionais no difratograma dos pós Ti-7,5Si-22,5B sugerem uma formação *in situ* da fase Ti₆Si₂B.

Após 10 horas de moagem são encontrados picos da fase TiB_2 nos difratogramas de ambos os pós e os tamanhos das partículas aumentam devido à ocorrência de soldagem excessiva, mais acentuada na mistura Ti-7,5Si-22,5B (< $1000 \, \mu m$), talvez por uma maior formação de TiB_2 durante a moagem. Em ambos os pós, os picos de silício desaparecem após 10 horas, que indica uma dissolução destes átomos na estrutura cristalina do titânio, e suas presenças em pequenos cristalitos e amorfizados [8].

Em pós Ti-18Si-6B e Ti-7,5Si-22,5B moídos por 30 horas, observa-se o início da formação de halos na região do pico mais intenso de titânio e a diminuição dos tamanhos das partículas. Como a diminuição dos tamanhos (< 250 μm) é mais acentuada e a intensidade do halo é maior nos pós Ti-7,5Si-22,5B, é provável que uma amorfização quase completa ocorra nos pós Ti-18Si-6B, fenômeno que tem como característica a formação de agregados.

Após 60 horas de moagem, novamente são observados halos nas regiões próximas dos maiores picos de titânio. A baixa intensidade do halo destas misturas pode estar relacionada com esta deformação residual da estrutura. Os tamanhos de partícula diminuem em pós Ti-7,5Si-22,5B moídos por 60 horas e a intensidade do halo aumenta, o que provavelmente está relacionado com a formação de fases frágeis (TiB₂) que contribui para a ocorrência de mecanismos de fratura e reduz o índice de amorfização dos pós.

Até 150 horas de moagem, nota-se uma diminuição progressiva do tamanho médio das partículas dos pós Ti-18Si-6B, enquanto que a outra mistura sofre um pequeno e progressivo aumento, assim ambas as misturas contêm partículas com dimensões (< 400 μm) e formas bastante aproximadas. A intensidade e largura dos halos também sofrem uma pequena variação em sentidos contrários até este período de moagem.

Nos estágios finais, são encontrados agregados de partículas dos pós Ti-18Si-6B e Ti-7,5Si-22,5B com distribuição heterogênea dos tamanhos (< 400 μm) e morfologias que variam entre arredondadas e irregulares. Agregados menores que 150 μm são encontrados nos pós com maior teor de boro, o que pode estar relacionado com uma grande formação de núcleos de TiB2, e consequentemente maior recristalização do titânio e da fase Ti6Si2B, como indica o aumento na intensidade dos picos principais destas fases.

Os difratogramas de raios X das ligas, Ti-18Si-6B e Ti-7,5Si-22,5B, após prensagem a quente (900°C / 30 MPa por 30 minutos), indicam a presença majoritária de picos das fases Ti+Ti $_6$ Si $_2$ B+Ti $_5$ Si $_3$ e Ti+Ti $_6$ Si $_2$ B+TiB, respectivamente (Fig. 3). Uma quantidade considerável da fase Ti $_3$ Si se forma nas ligas Ti-18Si-6B, provavelmente pela temperatura empregada na sinterização, a qual é diferente da seção isotérmica a 1250°C consultada [1]. Os picos menos intensos e sem identificação podem ser óxidos e/ou fases metaestáveis

formados a partir da contaminação atmosférica e/ou dos meios de moagem.

As estruturas (Fig. 4) destas ligas após prensagem a quente confirmam a presença majoritária das mesmas fases estáveis mencionadas anteriormente. Os pequenos tamanhos das fases formadas (< 3 µm) dificultam a realização de microanálises pontuais por EDS. Teores inferiores a 6 %-p. de ferro e uma contaminação de cromo e níquel (menor que 2%-at.) são detectados por EDS, provavelmente provenientes das esferas e dos vasos de moagem. As micrografias das duas ligas Ti-7,5Si-22,5B contêm regiões onde o crescimento de grão é anormal, provavelmente pela existência de partículas em que o processo de homogeneização não se completa, decorrente da aderência preferencial de algumas partículas durante a moagem.

Principalmente o auxílio de pressão e o uso de menores temperatura e tempo de sinterização, podem ter tornado as estruturas das ligas Ti-18Si-6B mais finas que as produzidas pelas outras rotas de moagem [10], além da possível maior influência de Fe e TiB₂ (halo deslocado para a esquerda) dos pós coletados no presente trabalho. O maior tempo de moagem dos pós utilizados na confecção da amostra cdp2 pode ter sido o fator que propicia a obtenção de um menor tamanho das fases em relação à amostra cdp1, além da pequena diferença de perfil entre seus halos (Fig. 1a).

Ambas as ligas Ti-7,5Si-22,5B prensadas também apresentam tamanhos das fases muito próximos, em concordância com os tamanhos de partícula e dos difratogramas, dos pós utilizados para o processamento de consolidação.

Os valores de porosidade sugerem que maiores tempos de moagem auxiliam na densificação dos pós, pois estes devem possuir uma maior energia armazenada.

5. CONCLUSÕES

Temperaturas mais elevadas ocorrem normalmente em experimentos com menos interrupção, e mecanismos de recuperação, cristalização ou recristalização podem ocorrer e reduzir a taxa de endurecimento efetiva dos materiais, possibilitando a ocorrência de maior aglomeração de pós no interior do vaso. A interrupção do processo de moagem permite o controle da temperatura de moagem e o endurecimento dos pós ocorre de forma mais efetiva.

Estruturas metaestáveis podem ser formadas durante o processo de moagem de pós $Ti+Ti_6Si_2B+Ti_5Si_3$ e $Ti+Ti_6Si_2B+TiB$. As fases Ti_6Si_2B e TiB_2 podem ter sido formadas durante a moagem.

A preparação de ligas Ti-18Si-6B e Ti-7,5Si-22,5B por moagem de alta energia produz com êxito estruturas trifásicas formadas pelas fases Ti+Ti₆Si₂B+Ti₅Si₃ e Ti+Ti₆Si₂B+TiB, respectivamente, após prensagem a quente.

AGRADECIMENTOS

À FAPESP e ao CNPq pelas bolsas de Mestrado e de Doutorado, respectivamente.

REFERÊNCIAS

[1] RAMOS, A. S. Determinação da Seção Isotérmica a 1250°C e da Projeção Liquidus do Sistema Ti-Si-B na Região Delimitada por 100%Ti-80%Si-80%B. Tese de Doutorado. Faculdade de Engenharia Química de Lorena.2001.

- [2] LI, W. et al. Microstructure and properties of directionally solidified NbSi₂/Nb₅Si₃ composites. Pricm 5: The Fifth Pacific Rim International Conference On Advanced Materials And Processing, Parts 1-5. Materials Science Forum, v. 475-479, p. 733-736, 2005.
- [3] ZHU, J. et al. Microstructure and mechanical properties of a rolled Ti-Si-B alloy. Materials Transactions, v. 44, n. 6, p. 1128-1132. Jun 2003.
- [4] KATRYCH, S et al. Structural materials: metal-silicon-boron. The Nb-rich corner of the Nb-Si-B system. Journal of Solid State Chemistry, v. 177, n. 2, p. 493-497. Feb, 2004.
- [5] JHA, A. K. et al. Failure analysis of a Ti-6Al-4V gas bottle. Engineering Failure Analysis, v. 13, p. 843-856. 2006.
- [6] VALIEV, R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nature Materials, v. 3, p. 511-516. August 2004.
- [7] VALIEV, R. Nanomaterial advantage. Nature, v. 419, p. 887,888. 31 October 2002.
- [8] SURYANARAYANA, C. Mechanical alloying and milling. Progress in Materials Science, v. 46, p. 1-184. 2001.
- [9] SILVA, G. Estudo sobre a preparação do composto Ti₆Si₂B e de ligas Ti+Ti₆Si₂B por técnicas de fusão a arco e moagem de alta energia. Tese de doutorado. Universidade do Vale do Paraíba. 2006.
- [10] FERNANDES, B. B. Preparação de ligas trifásicas Ti_{ss}+Ti₅Si₃+Ti₆Si₂B e Ti_{ss}+TiB+Ti₆Si₂B por moagem de alta energia. Dissertação de Mestrado. Universidade do Vale do Paraíba.2006.
- [11] VILLARS, P.; CALVERT, L. D. Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd Edition, ASM International, Materials Park, 1991.
- [12]RAMOS, A. S. et al. Ti₆Si₂B, a new ternary phase in the Ti–Si–B system. Intermetallics, v. 12, Issue 5, p. 487-491. May 2004.