
Component-based Framework for Real-Time Systems using Design Pattern
Approach for Interoperability

Emilia de Menezes Colonese1; Rovedy Aparecida Busquim e Silva2; Adilson Marques da Cunha3

Brazilian Aeronautics Institute of Technology – ITA Praça Marechal Eduardo Gomes, 50 São José dos Campos – SP – Brazil 12228-900

Abstract - Component-based software engineering offers a way
to solve complex systems by dividing them into the well-defined
modules. Self-adaptive mechanisms are crucial to enable run-
time reconfiguration and increase system components reuse in
other systems. These systems must satisfy functional and non-
functional requirements. Despite efficient data integration
being a common aspiration, to achieve interoperability remains
a challenge to implement the system’s functional and non-
functional requirements. For other components to work
together with existing ones, and for the development of new
system components to operate seamlessly with and among
other systems, the adoption of a common set of “building
codes” is required. This paper proposes a framework for real-
time systems with data interoperability through a scope
analysis of stakeholders’ requirements. It implements the
generic behavioral models for system Servers and Invokers.
Changes of state diagram dimensions through integration or
specialization, adapt the Invokers to the Interoperability
Pattern, and the target system to the framework, leading
software engineers to a transparent development and
integration process. The framework can lead software
components to high degrees of cost-effective reuse. This
approach is tested in a real-time system prototype developed in
the Brazilian Aeronautics Institute of Technology. The
framework focused on dynamically activation of service
components at run-time, self-adapting to external events. At
the end, functional requirements and the software architectural
structure are enforced such that the end-to-end timing
behavior of the resulting system and its specifications can be
verified.

Key-Words – Real-Time Systems, UAV, MDD, UML, Design
Pattern, Interoperability, Self-Adaptive.

I. INTRODUCTION

 One major benefit of the object-oriented paradigm is
the inherent support for abstraction centric, reusable, and
adaptable design. In particular, it is common to construct
complex systems using pre-defined frameworks. A
framework is a collection of collaborating classes that
provides a set of services for a given domain [1]. A developer
customizes the framework to a particular application by
subclassing and composing instances of the framework
classes [11]. According to Booch [1], frameworks represent
object-oriented reuse. The most important advantages of
using frameworks can be listed as follows:
- The target system need not be written from scratch

since it reuses the elements of the framework
- Frameworks structure the design of the target system

by providing a set of predefined abstractions given by
the classes in the framework. These classes provide an
architectural guidance for the system design.

- Frameworks are open designs because their classes
may be customized via subclassing.

1 colonese@ita.br; 2 rovedy@iae.cta.br; 3 cunha@ita.br

This work shows the conceptualization, implementation, and
deployment of a framework for real-rime systems allowing
interoperability among components, subsystem or systems,
and activation of services at run-time.
 The framework modeling follows a top-down approach and
has self-adaptive characteristics that enable a activation of
pre-defined services based on received external events, which
are managed by use cases.
 Adaptation in itself is nothing new, but it generally
represents an ad hoc activity, involving future execution of
condition forecasting at design time embedding adaptation
decisions in the system code [7, 12, 14].�
 Self-adaptive characteristics allow user benefits, limiting
run time overhead, reducing developer burdens, supporting
instantiation of the framework module and, exploiting reuse
and separated concerns [6].
 The proposed approach is built on the following insights:
- Monitoring the correct deployment of system

requirements;
- Offering an effective interoperability capability that is

easily applied to others components, subsystems or
systems; and

- Providing self-adaptive services at run-time according
to received external events.

 The case study shows that instead of developing
proprietary solution, a real time system is easily integrated
into the proposed framework.
 This paper is organized as follows. Section 2 describes the
main approach. Section 3 presents infrastructure used to
model and develop the proposed framework. Section 4
presents the interoperability framework, and Section 5
describes the case study applying a target real-time system
into the framework validating the solution. Finally, Section 6
concludes the work and summarizes the major findings.

II. APPROACH

 The framework architecture is structured in three modular
views. They represent the entire system based on different
concern areas, which are defined by stakeholders’
viewpoints: Logical (functionalities), Interoperability
(reusability), Technical (infrastructure / feasibility) [7].
Figure 1 shows the proposed architectural structure.

Figure 1. Architectural Structure

 According to the four phases of the Unified Process [10],
during the inception phase the system’s requirements are
identified. In the elaboration phase those requirements are
mapped to business activities producing a “wish list” of
systems functionality and infrastructure, named functional and
non-functional requirements.
 The system requirements might be presented as use cases.
A use case may contain a coherent and cohesive set of
detailed requirements. It describes how users, often referred
to as actors, will interact with an application and what
information they need from the system to accomplish their
task. Full analysis of a use case will lead to a business
processes definition (tasks) to accomplish the requirement(s),
the interface with the actors, and data needed to perform
tasks. Use cases diagrams are important to visualize the
overall system architecture, specifying, organizing and
modeling the system’s behaviors.
 Therefore, the Logical View covers a business
representation of the system, which is acquired through
functional requirements specification.
 Framework is a “partially completed application” that
customizes a specific application, and it is implemented by
the Logical View.
 The Technical View is concerned with non-functional
requirements or Quality of Service (QoS), used to achieve as
well as possible the functional aspects [3].
 A use case may combine functional and QoS
requirements. The authors introduced the Interoperability
View to capture specific reusability of a transparent and
common communication protocol among systems,
subsystems or components, avoiding the use of a Data
Translation Process [4]. The Interoperability View takes
advantage of well defined system use cases. The choice of
activating services depending on the use case that the
invoker’s event needs. The proposed framework focuses on
the logical and Interoperability Architectural views.
 A Design Pattern is a generalized solution to a commonly
problem occurring. The authors observed a common pattern
used for interoperability among components and subsystems
during the design phase. The process of discovering a
specific pattern is called Pattern Mining [10].
 Therefore, the Interoperability View is a design pattern that
implements specific property that is not delivered by the
analysis model, named Interoperability Pattern. The design
model differs from the analysis model in the way that it
contains aspects that are not required but are included to
make the entire system works better. In this approach the
pattern is used to solve the interoperability issue among
systems, subsystems and/or components.

III. FRAMEWORK’S NOTATION, MODELING, AND
TOOL

A. Unified Modeling Language for Real Time

 Modeling is an essential part in any software development,
which allows communication links between system analysts
and stakeholders in a high level of abstraction. The model
effectiveness is translated into a low cost and reduced
timeframe of software development.
 During last years, Unified Modeling Language (UML) has
been playing an important role for modeling Object-Oriented
(OO) languages. The Object Management Group (OMG)

characterizes UML as “a general-purpose modeling language
for specifying, visualizing, constructing and documenting
artifacts of software systems, as well as for business
modeling and other non-software systems” [16].
 Unified Modeling Language for Real Time (UML-RT)
[19] was introduced to allow real-time systems modeling.
UML-RT defines a constructor set based on the Real-Time
Object-Oriented Modeling (ROOM) [20], which included
capsules, connectors and ports to complement traditional
UML behavioral components.

B. Model Driven Architecture

 Model Driven Architecture (MDA) is an approach for
using models in software development. This approach allows
the translation of user’s requirements to use case diagrams,
and the system behavior to be separated from the
implementation details [15, 16]. MDA enables the
application to be easily ported from one environment to
another by first creating one or more Platform Independent
Models (PIM) and then translating the PIM into one or more
Platform Specific Models (PSM).
 By using an independent modeling language, such as
UML-RT, MDA can reduce the development cycle of a real-
time system while reaching platform independency. The
MDA methodology provides software components
portability, communication, and reuse, by using architectural
process based on context partitioning.

C. Computer-Aided Software Engineering Tool

 This work uses the Computer-Aided Software Engineering
(CASE) tool from Rational, called IBM Rational Rose
RealTime (RRRT). It is a visual real-time modeling tool,
which includes the constructor set capable of supporting
processes, methodology, common patterns and frameworks.
It also generates code to test the designed system model [10].
RRRT components includes packages, passive classes
(standard object-oriented classes), capsules (active classes
with ports and connectors), and protocol classes [17].
 The Unified Process was adopted by Rational (Rational
Unified Process - RUP) [19] to be used as an interactive
development process (Figure 2). Its models represent the real
world, capturing the problem to be solved using the UML-RT
notation.

Figure 2: RUP X Models

 The combination of customizable code generation and a
real-time framework is the key advantage provided by
Rational for enabling an MDA approach. MDA enables code
generation by using UML-RT models for several embedded
designs targeting either a commercial Real-Time Operating
Systems (RTOS) or proprietary scheduling environments.

IV. THE FRAMEWORK

 Frameworks allow code reuse and fast application
developments [2]. Design patterns and frameworks are highly
synergetic [9]. While a pattern can be used to describe a
framework, a framework can be written as a pattern
implementation.
 The framework design was based on the QoS requirement
of structuring reusable server’s structure for Control Station
services.�� �

 The authors used basic components of RRRT to implement
the proposed framework. Besides those basic components,
and in order to track and validate the user’s requirements the
authors created a passive class component to link the use case
model to the design model. This assures the effective use case
implementation by the framework.
 The Control Station (CS) capsule is compound of a
Dynamic Service Server (Service Distribution) capsule,
Common Protocol Class, and Use Case Class. The structure
diagram (Figure 3) was designed to plug-in CS services at
run-time, based on external events.

Figure 3. Framework Structure

 The External and the Internal Invokers Capsules have
specific statechart to implement theirs own behavior. The
interoperability design pattern is then applied on their
statechart by extending the component state which is
responsible for the communication with the CS, during the
design phase.

A. Control Station Capsule

 In order to implement self-adaptive characteristics, an
Event Awareness service, named “Service Distribution”
(Figure 4), was created as a Capsule. In this paper, it is
considered the transaction of receiving and answering to
external event of an Invoker a use case realization. In order to
the Service Distribution be able of choosing, at run time, the
right service needed by an Invoker, an adaptive policy was
implemented.

Figure 4. Events Awareness Structure and State Diagram

A self-adaptive policy is defined by a kind of Event-
Condition-Action (ECA) rules. The Event is the received
message, which is already related to some use case. The
Condition which is defined by use cases specifies what
service needs to be activated. Finally, the Action is the
activation of the correct service. This active component is
self-adaptive in the sense of providing the needed service
already managed by a use case, which controls events that are
received by real world activities. The authors defined the
rules to activate Services Capsules based on system use cases
that have captured system functional requirements [8].
The ECA rule table (Table 1) is defined during the system
design and applied on ActivateService state shown in Figure
4.

Table 1. ECA Rule

 The
distribution service component identified in Figure 4 as
“ServiceDistribution” implements the communication and
data interchange.

B. Service Invoker Capsule

 Service Invokers are actors that begin the use cases
sequence of action. All Invokers have their own statechart.
One of their states performs the communication and data
exchange with the CS.
 The authors have created their own design patterns as a
solution to optimize the interoperability issue into a
generalized solution [10]. The pattern is then applied by
inserting it in the specific state that exchange data with the
CS. Figure 5 shows a basic example of an Invoker Capsule,
and the Figure 6 shows the Interoperability Pattern applied to
the state responsible to connect to the CS.

Figure 5. Service Invoker State Diagram

���������

�	 �
� ��� �
� ��� �� �
� �

	 �
� ��

�
� � � �

�

� �
�

� � �
�

� � �� � ����� � � � �

� ����� ��� � � � �
�
����
�

��������

�	

�������	

� ����

��	

�����	

�� ���

����	

����

��	

�
�������	

Figure 6. Interoperability Pattern Applied
C. Dynamic Service Server Component

 Dynamic Service Servers (Figure 7) are active objects
representing the system self-adaptive modeling. Those
objects are set as optional in the design phase and are
dynamically activated at run-time. This process follows the
system adaptive policy written in the rules created to identify
and evaluate external events.

Figure7. Server States Diagram

D. Common Protocol Class

 The format design for data interchange was essential for
the framework. It has enabled the interoperability among
system components by encapsulating it in a structured
message class, named Common Protocol Class. This Class
contains all needed information to identify the invoker, the
service and data transmitted or received (Figure 8).

Figure 8. Common Protocol Class

E. Use Case Class

 Functional requirements are mapped to the software at the
design phase to use cases. The authors defined a passive
class, named Use Case Class (Figure 9) to register and trace
all use cases that might be realized by the system.

Figure 9. Use Case Class Structure

V. CASE STUDY

 The case study uses the proposed framework to create a
real-time system prototype to operate an Unmanned Air
Vehicle (UAV) from a Control Station (CS) The
functionalities for communication, navigation, surveillance,
georeferenced information storage, and situational awareness
visualization should be designed and implemented (Figure
10).

Figure 10. Control Station System

 The CS prototype subsystem was created using the Real-
time Embedded Systems class [5] at the Brazilian
Aeronautics Institute of Technology (Instituto Tecnológico de
Aeronáutica - ITA). It has been improved, in order to
implement self-adaptive characteristics.
 The scope of the CS prototype services are:
 - Communication UAV-CS (ECOM);

- Storage of Georeferenced Information (EMPM);
- UAV Navigation Control (ENAV);
- Target Remote Sensing (EVIG); and
- Graphic Scenario Visualization (EVIS).

 The UAV Route Control Manager (RCM) subsystem
prototype, also developed to verify the application of the
proposed framework. The RCM main functionality is to
control the UAV terminal route within an air-space area to
avoid airplane collisions. The RCM invokes the CS to
provide the correct UAV route by activating the related
services.

A. Adopting the framework

 In order to sucessfully reuse the framework, the system
analyst must apply the following steps:
Step 1 - Adopting the Communication Protocol Class;
Step 2 - Updating the Use Case Class, by inserting
appropriate system’s use cases;
Step 3 - Adjusting the system to the framework; and
Step 4 - Expanding the state which communicates to the CS
to apply the interoperability pattern.

 Figure 11 shows the Use Case Class after the framework
adaptation.

Figure 11. Prototype Use Case Class

Figure 12 shows the prototype structure after the framework
adaptation.

Figure 12. Framework applied to the Prototype Structure

B. Applying the interoperability design pattern

 The RouteControl capsule (Figure 13) is the External
Invoker of a CS Service. The ConnectCS state has to be
expanded to include the interoperability pattern.

Figure 13. Route Control State Diagram

 Expanding the ConnectCS state creates a deeper dimension
for the statechart, as shown in Figure 14. The new dimension
implements the code reuse concept and allows the new
Invoker to instantiate the Interoperability Pattern.
 Each state in this new dimension has its own code in C++
following the adaptive rules and keeping track of use cases
realizations for the RCM prototype system.

Table 2. Exchanging data for RouteControl

 ECA

rule have already activated the Service, but the code for
exchange data have to be inserted in each state of the
Interoperability Pattern statechart. The data exchange
between the Invoker and the Service is designed on Table 2,
which is later translated to the target language (Figure 14).

 Figure 14. ConnectCS State Expanded

 The utilization of self-adaptive mechanisms can be
observed at run-time by opening the RouteControl structure
diagram (Figure 15). In Figure 16 the prototype execution
results are exhibited.

Figure 15. Running the Prototype

Figure 16. System Results

VI. CONCLUSION

 This paper presents the implementation of a self-adaptive
component-based framework for real-time system based upon
UML-RT and MDA, which a new system can be easily
adjusted to the proposed framework.
 The creation of a efficient design pattern for
interoperability by defining a semantic for message
exchange, allowed an easy and transparent message exchange
among Invokers and Services of a CS.
 The implementation of the self-adaptive mechanism in the
framework did not increase the design complexity. Instead, it
has allowed a simple solution determination at run-time to the
system structure in a given scenario.
 A new Invoker was easily integrated to the CS prototype
system by applying the Interoperability Design Pattern, due
to its structure simplicity and a cost-effective code reuse.
 Authors of this paper believe that this approach is unique in
the sense of modeling and tracking functional requirements
throughout system dimensions.
 The major findings of this work are a proposed solution for
some gaps of tracking the correct deployment of use cases,
and the creation of the interoperability design pattern.

���������� �

� � � �
� � � �� � ��

	 �
� ��

�
� � � �
�

� �
�� � �
� � � �� � �
����
�

������
���

��	

��������

�	

����� 	

��������	

� �� 	

��������	

�� �� 	

�� ����	 � ��	 ����� 	

��������	

��������	

����	

�� �� 	

!�"����
���

��	

"�#���	 ����� 	

��������	

$ % 	 �� �� 	

 The track of use case realization could be automatically
implemented to allow direct transformations of use cases
diagrams to statechart. This process can be considered for a
future work.

REFERENCES

[1] Booch, G., “Object-oriented analysis and design with applications”,
Benjamin/Cummings, 1999.

[2] Budd, T., “An Introduction to Object Oriented Programming”, Addison
Wesley 3rd Ed, 2002.

[3] Colonese, E., and Cunha, A., “An Effective Infrastructure to Develop
GIS”, In Int. Conference on Information Technology: New Generations, Las
Vegas, USA, 2007.

[4] Colonese, E. , “Methodology for Integrating the Scenario Databases of

Simulation Systems”, Master Thesis AFIT/GCS/ENG/99J-03, USA, 1999.

[5] Cunha, A., “CE-235 Real-time Embedded Systems Lecture Notes”,
Brazilian Aeronautics Institute of Technology – ITA, 2006. Available:
http://www.ita.br/~cunha.

[6] David, P., and Ledoux, T., “ Dynamic Adaptation of Non-Functional
Concerns”, In Int. Workshop on Unanticipated Software Engineering (USE),
Malaga, Spain, 2002.

[7] David, P., and Ledoux, T., “Towards a Framework for Self-Adaptive
Component-Based Application”, Conf. on Distributed Applications and
Systems (DAIS), 2003.

[8] Douglass, B., “Capturing Requirements for Real-Time and Embedded
Systems”, Chief Evangelist, I-Logix, 1998.

[9] Douglass, B., “Doing Hard Time: Developing Real-Time Systems with
UML, Objects, Frameworks and Patterns”, Addison Wesley, 1999.

[10] Douglass, B., “Real-time Design Patterns”, Addison-Wesley, 2006.
[11] Gamma, E., Helm, R., Johnson, R., Vlissides J, “Design Patterns”,
Addison-Wesley, 2005.
[12] Hallsteinsen, S. et all, “Self-Adaptation for Everyday Systems”,
WOSS’04, ACM 1-58113-989-6/04/0010, USA 2004.

[13] Jacobson, I., and Rumbaugh, J. , “The Unified Software Development
Process”, Addison Wesley Logman, 1999.

[14] Layaida, O., and Hagimont, D., “Designing Self-Adaptive Multimedia
Applications trough Hierarchical Reconfiguration”, In Int. Conf. on
Distributed Applications and Interoperable Systems (DAIS), Athens,
Greece, 2005.

[15] OMG, “Model Driven Architecture”, Availabe: http://www
.omg.org/mda.

[16] OMG, “UML”. Available: http://www.omg.org/gettingstart
ed/what_is_uml.htm.

[17] Rational Software Corporation, “DEV470 - Mastering Rational Rose
RealTime - Student Material”, Volume 1, 2006.

[18] Rational Software Corporation, “Rational Unified Process”. Availabe:
http://www-128.ibm.com/developerworks/ rational/lib
rary/may05/brown/index.html.

[19] Selic, B., Gullekson, G., and Ward, P., “Real-Time Object-Oriented
Modeling”, John Wiley & Sons, 1994.

[20] Selic, B., and J. Rumbaugh, “Using UML for Modeling
Complex Real-Time Systems”. Available: http://www-128.ibm.
com/developerworks/rational/library/content/03July/1000/1155/115
5_umlmodeling.pdf.

