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Abstract—This research proposes a modification to the 
Multiple Sample Correlation Algorithm (MSCA) where some 
statistical concepts are aggregated to the original method. With 
our modifications we were able to improve the emitter position 
fix estimate more than 240% compared to the original MSCA 
and more than 1,200% compared to the Extended Kalman Filter 
Methodology. 
 

Index Terms—Bearings-only target localization, Multiple 
Sample Correlation Algorithm, Triangulation. 

I. INTRODUCTION 
The location’s estimation of a stationary electronic emitter 

through using no more than passive bearing measurements has 
several purposes on the field of electronic warfare: 
surveillance, intelligence actions, interference location, and 
suppression of enemy air defense systems, among others. 

This problem has been studied for decades and we can cite 
as recent works: [1-3]. 

There are two ways of estimating the emitter’s localization: 
using the azimuth angle or using the time of arrival of an 
electronic signal. We will focus on the first method, which is 
called triangulation. 

The triangulation method has several techniques: 
Geometrical, LSE (Least-Squared Error), DPD (Discrete 
Probability Density), Generalized Bearings, Maximum-
Likelihood Estimation, and Multiple Sample Correlation. 
Readers are referred to [4] for an excellent survey on this 
subject. 

In this work we suggest a modified approach to the Multiple 
Sample Correlation technique. 

All the above applications on the field of electronic warfare 
are natural candidates for application of the proposed 
methodology and the users of our research are the electronic 
warfare’s community. 

This paper is organized as follows. In section 2, we review 
the Multiple Sample Correlation Algorithm. Our proposal is 
formally introduced in section 3. Section 4 presents 
preliminary computational results of the proposed technique 

and section 5 concludes. 
 

II. MULTIPLE SAMPLE CORRELATION ALGORITHM 
As mentioned before, the MSCA (Multiple Sample 

Correlation Algorithm) is one of the triangulation method’s 
techniques. This methodology utilizes the azimuth angle of 
arrival of a signal, which is called line of bearing (LOB). 

The aircraft (it can also be a ship or a ground vehicle) 
usually requires an antenna array to compute a LOB. It can 
use the signal phase, the signal relative amplitude or the signal 
time of arrival in order to perform this computation. 
Engineering limitations of the parameter measurement device 
(distance among the antennas, time measurement precision, 
and receiver sensibility, among others) create the 
measurement error and the atmosphere’s perturbation on the 
signal creates the noise. The total error (measurement error 
plus the noise) makes the LOB to move away from the real 
emitter’s bearing. For further details see [5]. 

The MSCA was proposed by Fu et al [6] and it “utilizes the 
intersection of the LOB fans, defined as the measured LOB 
plus and minus the maximum error in the sensor. Using the 
maximum error guarantees that the emitter is within the 
resulting area” [4]. This concept is illustrated in figure 1, 
where the circle represents the aircraft position, the doted line 
represents the measured LOB; the continuous lines represent 
the sides of the LOB fan; the bold lines represent the area 
defined by the LOBs fans’ sides; and (a), (b) and (c) represent 
the measured LOBs in the time domain. 

Poisel [4] declared that “the idea of using maximum error is 
appealing because it guarantees the emitter is within the error 
bounds. Unfortunately, it is difficult to guarantee that there is 
some maximum error associated with an LOB measurement 
device”. 

In order to bypass the “maximum error guarantee” problem, 
we modified the MSCA technique aggregating some statistical 
concepts. We named our methodology as Statistical Multiple 
Sample Correlation Algorithm (SMSCA). 

 



 
Fig. 1. MSCA basic concept 

 

III. STATISTICAL MULTIPLE SAMPLE CORRELATION ALGORITHM 
As one can infer, the solution for the “maximum error 

guarantee” problem is to associate to each LOB fan a 
probability of the emitter to be inside it. 

In order to accomplish that, we are going to assume that the 
total error has a Gaussian (Normal) distribution with zero 
mean and variance 2σ . We based our premise in the 
following statement: “in general, the central limit theorem 
indicates that the distribution of the sum of many random 
variables can be approximately normal, even though the 
distribution of each random variable in the sum differs from 
the normal” [7]. As the total error is the sum of (at least) two 
random variables, we believe our assumption is correct. 

Given this realization, we are going to use, as LOB fan’s 
sides, no more the maximum error of a device, but an error 
related to a pre-specified probability. This idea can be 
visualized in figure 2, where the sides of the LOB fan 

correspond to the measured LOB plus the %p  confidence 
limits associated to the total error probability density function, 
where %p  is a given probability (confidence level). 

The probability of n  independents events 1 2, ,... , nA A A  
occur simultaneously is: 

 1 2 1 2( ... ) ( ) ( )... ( )n nP A A A P A P A P A∩ ∩ ∩ =  (1) 

Since the LOBP  (emitter’s probability of lying inside one 
specific LOB fan) is completely independent of the probability 
of the emitter lying inside another LOB fan and assuming the 
same LOBP  for each LOB fan, we can rewrite (1) as: 

 ... n
D LOB LOB LOB LOBP P P P P= =  (2) 

where DP  is the probability of the emitter lying in the area 
(polygon) formed by the intersection of n  LOB fans with the 
same LOBP . 

 
Fig. 2 Statistical sides of LOB fan 

 



For one desired DP , the individual probability of one LOB 
fan should be: 

 n
LOB DP P=  (3) 

Knowing the LOBP  for a desired DP  and the aircraft’s 
position, we can calculate the equations of the two sides of 
each LOB fan. The area that is inside all LOB fans will be the 

DP  error polygon. If the polygon’s vertices are arranged in 
order to form a convex shape, the polygon’s area can be 
calculated by (4). 
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The polygon’s centroid coordinates are given by (5) and (6) 
and they will be our estimate of the emitter Position Fix (PF). 
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In (4), (5), and (6) n  is the number of vertices, 0 nx x= , 

and 0 ny y= . 
Our proposal can be described formally as follows: 
Step 1. For a given number of LOBs and for a desired DP , 

calculate the LOBP  through (3); 
Step 2. Find the LOB fan sides by adding the measured 

LOB to the LOBP  confidence limits associated to the total 
error probability density function; 

Step 3. Determine the equations of the two sides of each 
LOB fan; 

Step 4. Compute the coordinates of the DP  error polygon; 
Step 5. Calculate the area and the centroid’s coordinates of 

the DP  error polygon through (4), (5) and (6). The estimated 
PF will be the centroid’s coordinates. 

The distance between the LOB fan sides at a certain 
distance is proportional to the number of LOBs for a given 

DP . This concept is illustrated in table I. 
As the distance between the sides of the LOB fan increases 

with the number of LOBs, the DP  error polygon’s area will 
increase as well. This idea can be visualized in figure 3, where 
in (a) we have the 95%  error polygon formed by 5 LOBs and 
in (b) we have the same 95%  error polygon formed by 3 
LOBs. The notations of figure 3 are: the dotted line represents 
the measured LOB; the continuous lines represent the sides of 
LOB fan; the bold lines represent the sides of the DP  error 
polygon; the triangle represents the emitter’s position; the 
circles represents the aircraft’s coordinates and the asterisk 
represents the centroid of the polygon. Observe that the 
emitter’s position, the aircraft’s coordinates, the LOBs and the 
scale of the figure 3 (a) are the same ones of the figure 3 (b). 

 

 
TABLE I 

INFLUENCE OF THE NUMBER OF LOBS IN THE LOB FAN ( 0.95DP =  AND 5ºLOBσ = ). 

Number 
of 

LOBs 
LOBP (%) Confidence Interval 

Distance between the 
sides of the LOB fan 

at 50 mi (mi) 

Distance between the 
sides of the LOB fan 

at 120 mi (mi) 
2 97.468 [-11.182º; 11.182º] 19.769 47.445 
4 98.726 [-12.455º; 12.455º] 22.086 53.007 
8 99.361 [-13.635º; 13.635º] 24.257 58.217 

16 99.680 [-14.739º; 14.739º] 26.307 63.137 
32 99.840 [-15.778º; 15.778º] 28.256 67.814 

 



 
Fig. 3 Influence of the number of LOBs on the polygon’s area 

 
Based on the concept illustrated by figure 3, we offer an 

alternative methodology named Minimum Area Statistical 
Multiple Sample Correlation Algorithm (MASMSCA): 
perform the SMSCA for each of the 

,2 ,3 ,...n n n nC C C+ + +  possible combinations of the n  

measured LOBs, where ,n kC  denotes the number of 

combinations of n  elements taken k  at a time. The centroid’s 
coordinates and the area of the polygon with the minimum 
area among all the combinations tested will be the outcome of 
the MASMSCA. 

 

IV. NUMERICAL RESULTS 
 
We simulated 2 different geometries in this section. 

A. First Simulation 
We ran 30,000 Monte Carlo simulations of the geometry 

proposed by [6] and [8]. This geometry was the same one 
illustrated in figure 3(a), where the emitter was located at 
(141,141) and the aircraft initial coordinates were (130,11) 
with a ground speed of 0.1 miles/second in each axis. The 
aircraft took 5 measurements (one every 300 seconds) and the 

closest distance between the aircraft and the emitter was 100 
miles. The total error of the measurement device was normally 
distributed with zero mean and standard deviation of 1°. 

We compared the performance of our proposals (SMSCA 
and MASMSCA) with the Extended Kalman Filter 
Methodology (EKFM) [8] and the original MSCA [6]. We 
utilized for the EKFM: (135,135) as a priori estimate of the 
emitter position; 2 2(5 ) midiag  as covariance matrix; and 

measurement uncertainty 2 2 2 2(1 )deg 0.0175 radR = = . 
For the original MSCA we used 3 degrees as maximum error 
of the measurement device. For our proposals we utilized a 

DP  of 90%. These comparisons are listed in table II. 
Observe that the MASMSCA’s polygon did not reach the 

desired DP  (90%). We noticed that, in 92% of the cases, the 
LOB with the maximum error was part of the LOB’s 
combination that resulted in the polygon with the minimum 
area. We tribute the reason of not reaching the desired DP  to 
the fact that there was not anymore a Normal distribution of 
the error (the maximum error LOB was part of the 
MASMSCA polygon in most of the cases). 

 

 
TABLE II 

ALGORITHMS’ PERFORMANCE COMPARISON –  SIMULATION 1. 

Algorithm 
X coordinate estimate  Y coordinate estimate Emitter 

location 
estimate error 

(mi) 

DP  error 
polygon’s 
Area (mi2) 

% the emitter is 
inside the DP  error 

polygon  
Mean 
(mi) 

Standard 
deviation (mi)  Mean 

(mi) 
Standard 

deviation (mi) 
MASMSCA 0.091 1.689  0.100 1.675 0.135 43.686 84.836 

SMSCA 0.268 3.648  0.276 3.642 0.385 60.561 89.996 
MSCA 0.303 1.627  0.309 1.618 0.433 102.010 98.716 
EKFM -1.027 1.430  -1.306 1.635 1.661 --- --- 

 
TABLE III 



ALGORITHMS’ PERFORMANCE COMPARISON –  SIMULATION 2. 

Algorithm 
X coordinate estimate  Y coordinate estimate Emitter 

location 
estimate error 

(mi) 

DP  error 
polygon’s 
Area (mi2) 

% the emitter is 
inside the DP  error 

polygon  
Mean 
(mi) 

Standard 
deviation (mi)  Mean 

(mi) 
Standard 

deviation (mi) 
MASMSCA -0.001 0.786  0.015 0.787 0.015 12.806 82.042 

SMSCA 0.069 2.752  0.093 2.751 0.116 25.571 93.132 
MSCA 0.005 1.077  0.037 1.078 0.037 28.450 97.656 
EKFM -3.641 442.280  2.877 168.830 4.640 9.736 80.092 

 

B. Second Simulation 
In this simulation the emitter was located at (0,0) and the 

aircraft took 9 LOB measures. We divided the emitter’s 
southern hemisphere in 9 sectors of 20° each and the aircraft 
position at the LOB measurement time was uniformly 
distributed in the 80 miles  arc of each sector. Acting this way, 
we generated 100 different geometries. Figure 4 illustrates this 
idea, where the continuous line represents the 80 miles arc, the 
dashed lines represent the borders of the nine sectors, the 
triangle represents the emitter, and the stars and the circles 
represent the aircraft’s positions in 2 of the 100 generated 
simulations. 

 
Fig. 4 Geometry of the second simulation 

The parameters used in this simulation were the same ones 
used in the first simulation, except for: 
• The geometry itself; 
• We used the intersection of the first 2 LOB as a priori 

estimate of the emitter position for the EKFM. The other 
6 LOBs were used for the EKFM itself; 

• The elliptical error probable (EEP) proposed by 
Blachman [9] was associated to the PF estimated by the 
EKFM; 

• A DP  of 93% was used for MASMSCA, SMSCA and 
Blachman’s EEP. 

For each of the 100 geometries we ran 5,000 Monte Carlo 
simulations. Table III lists the results of these 500,000 
simulations. 

Observe that the standard deviation of the EKFM was very 
big compared to the other methods. It happened because in 
some Monte Carlo runs the EKFM did not converged. This 

lack of convergence was detected by [8] and can occur if the a 
priori estimate of the emitter position is too far from the real 
emitter’s position. This situation can occur, for example, if the 
geometry illustrated in figure 5 takes place. 

 
Fig. 5 Example of a far a priori estimate of the emitter position (the asterisk 
and the circles represent, respectively, the estimated emitter’s position and  

the aircraft’s coordinates).  
The area of Blachman’s EEP was smaller than the 

MASMSCA polygon’s area but its probability of contain the 
emitter was also smaller than the one of MASMSCA. 

Once more the MASMSCA’s polygon did not reach the 
desired DP  (93%). The percentage of times the maximum 
error LOB was part of the LOB’s combination that resulted in 
the polygon with the minimum area in this second simulation 
was 96%. 

V. CONCLUSION 
 
We proposed a modification to the Multiple Sample 

Correlation Algorithm where some statistical concepts were 
aggregated to the original method. With our modifications we 
were able to improve the PF estimate and the DP  error 
polygon’s area. 

In section 2, we reviewed the Multiple Sample Correlation 
Algorithm. Our proposal was formally introduced in section 3. 
Section 4 presented preliminary computational results where 
our proposals (SMSCA and MASMSCA) were compared with 
the Extended Kalman Filter Methodology [8] and the original 
MSCA [6]. 

The average PF estimate calculated by MASMSCA was, at 
least, more than 240% closer to the real emitter position than 
the average PF estimate calculated by the original MSCA and, 
at least, more than 1,200% closer to the one computed by the 
EKFM. 

In spite of offering a better PF estimate, the MASMSCA 
were not able to create an error polygon with the desired DP . 



On the other hand, the SMSCA reached the desired DP  in all 
the evaluated cases. 

Analyzing the preliminary computational results we 
concluded that the best way to employ our methodology is to 
calculate the PF through MASMSCA and the DP  error 
polygon boundaries by using the SMSCA. 

For future works we should compare our proposal with 
other triangulation methods. 
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