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 Abstract  Unmanned air vehicles often resort to a low-cost 

inertial measurement unit (IM U) in an inertial navigation 

system (INS) to estimate position and velocity. Stand-alone INS 

operation yields unbounded estimation errors. Such behavior 

motivates INS aiding by auxiliary position and velocity sensors 

to limit navigation error. Acceleration maneuvers and IM U 

rotation with respect to the vehicle are used to enhance the 

observability of INS error dynamics, in conjunction with 

Kalman filter-based sensor fusion to estimate position and 

velocity errors, IM U misalignment and sensor errors. This work 

investigates feedforward and feedback of error estimates for 

INS aiding. Feedforward integration is used to estimate IM U 

misalignment and sensor errors with adequate accuracy, and 

then switches to feedback integration for in-flight alignment 

(IFA), that is INS reset and IM U calibration during operation. A 

M onte Carlo simulation provides evidence supporting the 

approach. 

 Keywords  inertial navigation, in-flight alignment, sensor 

fusion,autonomous vehicles, robotics. 

I. INTRODUCTION

 An inertial navigation system (INS) estimates position and 

velocity. Gimbaled INS implementations (GINS) employ 

accurate mechanisms to isolate the IMU from the host 

vehicle’s motion and keep alignment with the navigation 

reference frame. A strapdown configuration (SDINS) 

employs an IMU rigidly attached to the host vehicle. The INS 

can track short-term, abrupt motions, but estimation errors 

grow unbounded during long operation periods due to the 

integration of low-frequency errors such as accelerometer 

bias and rate-gyro drift, which are here assumed to be 

unknown, constant null offsets. Before entering navigation 

mode, IMU calibration and alignment – often relative to the 

North-East-Down frame – make use of leveling and 

gyrocompassing while the vehicle remains stationary at a 

known location on the ground. More recently, autonomous 

vehicles resort to a low-cost SDINS aided by additional 

sensors, and Kalman filter-based sensor fusion is employed to 

estimate navigation, IMU misalignment and sensor errors [1]-

[5].  

 Reference [6] showed the lack of full observability when 

estimating IMU misalignment and sensor errors of a 

stationary GINS with velocity error measurements. Their 

analysis employed linear navigation and misalignment  
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error dynamics augmented with random constant 

accelerometer bias and rate-gyro drift. Reference [7] departed 

from the augmented computer-frame velocity error model of 

a GINS, investigated its observability, and indicated that the 

ability to maneuver is “a blessing in disguise”. That is, 

though IFA may seem to be less accurate and more 

complicated than alignment at rest, maneuvers during the IFA 

phase can excite latent error dynamics. Acceleration 

maneuvers in a GINS were modeled by a concatenation of 

piece-wise constant (PW C) specific force segments to 

circumvent the trajectory-dependent, numerical computation 

of the observability Grammian of a linear time-varying 

model. Observability analysis of the PW C linear error 

dynamics was based on determining the rank of the stripped 

observability matrix (SOM) after each acceleration segment 

[7][8]. However, SOM analysis disregarded the actual model 

mismatch arising from linearization errors during operation 

and its effect on error estimation accuracy.

 Reference [7] claimed further that covariance simulation and 

real IFA results showed that the exact nature of acceleration 

maneuvers is not influential, but their mere existence is 

paramount for accurate GINS misalignment and IMU error 

estimation. Thus, insights from SOM analysis seem to apply 

to other GINS-equipped vehicles and maneuvers. On the 

other hand, most SDINS-equipped vehicles conduct attitude 

maneuvers to generate accelerations. It is intuitive that 

maneuvers in acceleration and IMU attitude should enhance 

estimation accuracy, but continuously changing IMU attitude 

violates the assumption of PW C dynamics, which precludes 

SOM analysis.  

 Instead of a strapdown configuration, here the IMU rotates 

relative to the host vehicle. IMU rotation does not require the 

accurate mechanism of a gimbaled INS because what matters 

is to change the direction of the inertial sensors’ sensitive 

axes relative to gravity and earth angular rate. Hence, the host 

vehicle need not maneuver away from the desired path for 

observability enhancement during IFA. The IMU can be 

locked in a known attitude relative to the vehicle following 

the IFA phase. The approach has been inspired by [8], which 

employed SOM analysis and concatenated PW C segments of 

IMU attitude for multiposition alignment on the ground. 

Notice that vehicle attitude is a by-product of the 

conventional strapdown configuration at all times, whereas 

during IFA phase the present approach produces IMU 

attitude. The inertial sensors are assumed to be aligned with 

the IMU frame Sb.

 The second purpose of this investigation is to evaluate both 

feedforward and feedback of navigation and IMU sensor 

error estimates based on aiding position and velocity sensors 



for sensor fusion. Feedforward aiding employs a Kalman 

filter linearized about the diverging INS estimates, and 

removes a posteriori the estimated position and velocity 

errors from the INS output. On the other hand, feedback 

aiding employs in-flight INS reset and IMU calibration, thus 

resulting in an extended Kalman filter linearized about the 

corrected INS output. This work initially resorts to 

feedforward fusion to estimate misalignment and IMU errors 

with sufficient accuracy, and then switches to feedback 

fusion for INS reset and IMU calibration.  

II. INERTIALNAVIGATION AND ATTITUDE

DETERMINATION

 The continuous-time navigation equations in the local North-

East-Down reference frame SNED are: 
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 Latitude , longitude , and altitude h describe the terrestrial 

position, whereas VN, VE, and VD are the North, East, and 

Down components of velocity relative to Earth rotating with 

rate . The U.S. Department of Defense World Geodetic 

System (DoD WGS-84) approximates the earth’s shape by a 

geocentric reference ellipsoid, which models earth radius 

Re( ), curvature radii RE( ) and RN( ) along East and North 

directions, respectively, and gravity [9]. Gravity magnitude 

model g( ,h) is a sufficiently accurate approximation of 

gravity for the present purposes [10].  

 Use of accelerometer data in (1) needs attitude 

determination, i.e. the transformation from Sb to SNED. One 

approach is to compute the direction cosine matrix (DCM) 

from angular rate measurements and the initial alignment’s 

DCM: 
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 The subscript m indicates a measured value, whereas INS

means the INS stand-alone solution. The entries in skew-

symmetric matrix bi

mb ,
 are the Sb components of the angular 

rate sensed by the IMU’s rate-gyro triad. Likewise, skew 

symmetric matrix NEDi

INSNED ,
 relates to the components of 

NEDi

INSNED ,
 according to: 

NEDi
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T
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INSINSINS ,,  are from the INS stand-alone solution to (1). 

The INS stand-alone solution to (1) and (2) is computed by a 

multirate algorithm to reduce the computational burden. The 

algorithm processes IMU discrete-time measurements, that is 

angular and thrust velocity increments occurring between 

sensor samples [11]-[13][16]. Coning errors arise because 

finite rotations do not commute, sculling errors are due to 

incorrect thrust velocity computation as coordinate frames 

rotate between data samples, and scrolling errors arise from 

velocity and position updates occurring at distinct rates. 

Though complex, with intricate compensation terms to 

attenuate such errors, the multirate approach in [12] was 

utilized due to its enhanced accuracy. Thrust velocity 

increments from the accelerometers are transformed from Sb

to SNED at a high sampling rate, and terrestrial velocity and 

position are solved at intermediate and slow rates, 

respectively. The fast acquisition rate of incremental inertial 

samples and attitude computation has been set to 400Hz. The 

INS terrestrial velocity and position are computed at the 

intermediate and slow rates 1/Tint=200Hz and 1/Tnav=100Hz,

respectively. The stand-alone inertial solution diverges due to 

errors in IMU data and erroneous processing by the multirate 

algorithm, thus causing linearization errors and model 

mismatch in the Kalman filter used for fusion of the INS 

solution with aiding sensors.  

 Fig. 1 shows the most relevant NED coordinate frames and 

misalignment angles in modeling the error dynamics for 

Kalman filter-based sensor fusion. True, computed, and 

platform frames, St, Sc, and Sp, respectively, are located at the 

actual and estimated positions. Sc is perfectly known, albeit it 

is incorrect.

Fig. 1. NED coordinate frames and respective misalignment angles 

 If initial alignment and inertial data were error free, 

integration of (2) would produce b

tD . However, 

accelerometer bias and rate-gyro drift yield b

INSNED

b

p DD ,
.

 is a small misalignment angle vector due to errors in the 

estimated position.  rotates St into alignment with Sc. The 

small misalignment angle vector  is due to rate-gyro drift, 

and rotates Sc into alignment with Sp. Use of the computer 

frame Sc for the error model is attractive because it renders 

the misalignment rate 

c

 uncoupled from both position and 

terrestrial velocity errors. Total misalignment angle = +

from St to Sp can be estimated using the INS solution to (1), 

and the Kalman filter estimates of  and position error R.

 Assuming a spherical earth and the IMU path in the vicinity 

of the earth’s surface, the computer-frame position error 

model was obtained and further elaborated to show its 

equivalence to the computer-frame velocity error model [14]. 

The latter describes the error dynamics with a structure 



nxAx )t(  that fits in with the Kalman filter 

framework where n is white noise. IMU sensor errors are 

additive accelerometer bias b, rate-gyro drift b, and white 

noise: 
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III. INDIRECT FEEDFORWARD/FEEDBACK INS 

AIDING WITH MANEUVERS FOR IFA ENHANCING

 The continuous lines in Fig. 2 depict a feedfoward, indirect 

Kalman filter-based fusion of INS estimates with aiding 

position and terrestrial velocity. The term “indirect” refers to 

error state estimation rather than estimation of the full state. 

The dashed lines indicate the feedback configuration, in 

which the INS is reset during operation by subtracting the 

estimates of misalignment and IMU errors. Noting that 

subscript a indicates aiding sensor, and measurement y is the 

difference between the INS solution and the aiding position 

and velocity, then: 
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 Representation of the above aiding differences in the NED 

coordinate frame yields: 
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Fig 2. Indirect feedforward INS-aiding architecture. V is short for Ve.

 Ideally,  and  are white and uncorrelated noise processes 

in the aiding sensors. However, the actual processing of 

observables within the aiding sensors gives rise to correlation 

in time and among components of aiding position and 

velocity. Such correlations are not considered here in the 

statistical model of measurement errors. Thus, the discrete-

time measurement equation in the aided-INS Kalman filter is 

yj=[ RNED(j)
T

Ve,NED(j)
T]T=H xj+vj, where vj is a zero-mean, 

white sequence with diagonal covariance R , and 

H=diag(I6,O6x9).
 Measurements Asp,NED,m, and INS solution-dependent 

parameters Ve,INS, RINS and b

INSpD ,
 for use in the Kalman filter 

have been updated at rate 1/Tnav=100Hz. A(t) has been 

discretized to produce the state transition matrix, that is 

)2/T)kT((T)kT( navnavnavnavk AIAI . Uncertainty in 
k

has been translated into an additive, zero-mean, white noise 

sequence wk with diagonal covariance matrix Q, which is 

related to the linearization error about the diverging INS 

solution. Filter estimates and respective covariance matrix 

have been propagated forward in time also with frequency 

1/Tnav. Their updates at rate 1/Ta =1Hz occurred when aiding 

measurements became available.  

 Due to model mismatch caused by errors in the INS stand-

alone solution, the residual sequence at instants multiple of Ta

was monitored to ensure statistical consistency [15]. 

Adequate tuning of Q should produce a zero-mean, white, 

Gaussian residual sequence with known covariance matrix S.

Had a position or velocity residual component been found 

outside 3 times the square root of the corresponding element 

in the diagonal of S, the corresponding position or velocity 

error variance was reset. The corresponding off-diagonal 

elements in the estimation error covariance matrix were also 

altered to keep the cross-correlation coefficients unchanged 

by the reset.  

 Goshen-Meskin and Bar-Itzhack [7] modeled maneuvers 

during the IFA phase of a GINS with 20 seconds, piece-wise 

constant (PWC), 0.1g specific force segments. Consequently, 

IDb

p
, and A23 in Eq. (5) was the single PWC, significantly 

time-varying block in A(t). IMU rotation, however, violates 

conditions for valid SOM analysis because b

pD  varies 

continuously. Aiding position and velocity measurements, 

respectively Ra and Ve,a, have been generated from ground-

truth corrupted by additive Gaussian, zero-mean, white noise 

with a diagonal covariance matrix R . IMU rotation with 



respect to the vehicle was simulated with IMU attitude 

ground-truth in terms of yaw, pitch, and roll relative to the 

NED coordinate frame [11][16]: 

]rd)[7.1/t2(s5.0)300/t2(s      

]rd)[3.07.1/t2(s5.0)300/t2(s     

]s][200,0[t]rd)[85.0/t2(s5.0)300/t2(s             (7) 

 The GINS stand-alone solution was simulated by enforcing 

that 0, generating IMU data, and solving Eq. (1) and 

Eq. (2). In this case, NX b
, EYb

, and DZb
. Each 

rate-gyro was then corrupted by drift Xb= Yb= Zb=2 /h and 

additive zero-mean, white noise with standard deviation 

=1 /h, and integrated between consecutive sensor samples 

to yield incremental angular measurements. Given the initial 

position and terrestrial velocity, and ground acceleration 

DEN V,V,V  which the IMU was subject to, the NED ground-

truth specific force 
tspA ,NED,
 was obtained from Eq. (1). From 

IMU attitude ground-truth in Eq. (2), 
tsp

t

b AD ,NED,
 was 

computed, and each accelerometer corrupted by bias 

Xb= Yb= Zb=3mg and additive zero-mean, white noise with 

standard deviation =1mg. Integration between consecutive 

sensor samples resulted in the incremental thrust velocity 

measurements.  

 Motion 1 aimed to show whether a constant, long-duration 

acceleration can enhance observability, though its ultimate 

velocity is surely not attainable by a low-cost host vehicle. 

With (0)=2312 S, (0)=4552 W, and h(0)=600m as the 

initial location at ITA facilities, Motion 1 consisted of 

constant ground acceleration a=5m/s2 [11][16]: 

]s][200,0[t]s/m[at300VVV DEN
        (8) 

 With the same initial location and terrestrial velocity, Motion 

2 comprised five PWC, 40s ground acceleration segments as 

shown in Tab. 1.  

TABLE I 

MOTION 2 GROUND ACCELERATION SEGMENTS

Segment
NV EV DV

1 0 0 0
2 a 0 0 

3 0 a 0 

4 a a 0 

5 0 0 -a 

IV. SIMULATION RESULTS

 Making use of solely the indirect feedforward fusion the 

results showed that the combination of concatenated 

acceleration maneuvers in distinct directions and rotating the 

IMU provide accurate estimates. The simulations showed that 

error propagation of a GINS at rest and in cruise are seen to 

be similar because of negligible horizontal specific forces in 

both conditions. Figure 3 shows the 1–sigma filter–

computed standard deviation of the estimation error and one 

realization of IMU sensor error estimation for Motion 2 

combined with IMU rotation. Figure 4 shows the 

corresponding misalignment. The figures clearly indicate the 

significant estimation error in the initial acceleration 

segments, which precluded the use of indirect feedback 

fusion right from the start for INS reset by means of 

calibration with estimates of IMU errors and misalignment. 

Such attempts failed because of filter divergence. The same 

was observed both for GINS and rotating IMU 

mechanizations. Thus, switching from feedforward to 

feedback of error estimates and the corresponding IMU 

calibration only occurred at t=195s. Figure 4 shows how 

maneuvers improved the misalignment estimation accuracy, 

notably in azimuth, which is weakly observable when the 

IMU is stationary on the ground.  

 After the switch to feedback of error estimates, the INS 

solution to the attitude DCM computed with Eq. (2) was 

corrected with the estimated misalignment as follows. 

Recalling Eq. (4) and Fig. 1:  
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 Throughout the simulation, both before and after switching 

from feedforward to the feedback configuration the accuracy 

of the estimated DCM was evaluated by two performance 

indices. A convergence index J indicated how close the 

estimated DCM was from the ground-truth, whereas an 

orthogonality index F measured the degree of orthonormality 

of the rows (columns) of the estimated DCM:  
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 Though not shown here for the sake of space, the statistics of 

a Monte Carlo simulation with 20 realizations concerning 

position and velocity estimation errors were indeed 

encouraging with regard to the novel concept of IFA with a 

rotating IMU relative to the vehicle. Figure 5 shows a 

realization of position and velocity errors at the INS output 

seen in Fig. 2. Feedforward of the error estimates compensate 

for most errors in the short term. However, errors in the filter 

model continue to increase due to linearization about the 

diverging INS output. Filter divergence is avoided by 

switching to feedback configuration. Then, IMU calibration 

by means of removal of estimated biases and drifts, and INS 

reset via correction with estimated misalignment, velocity, 

and position errors result in a drastic reduction of INS output 

error. In this condition, the filter model is linearized about a 

far less incorrect trajectory due to feedback of fairly accurate 

error estimates, and thus the fusion scheme becomes an 

extended Kalman filter. 

 Figure 6 shows the performance indices regarding the 

computation of the DCM. The results depict a Monte Carlo 

simulation with 20 realizations, and shows the mean, the 

minimum, and the maximum values of the respective 

performance indices. Notice the positive effect of the initial 

maneuvers on DCM estimation accuracy. 
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Fig 3.   Bias (g0) and drift (deg/h) estimation error  motion 2 and rotating IMU, indirect feedforward fusion. 
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Fig 4.   Misalignment estimation error (arcsec) - motion 2 and rotating IMU, indirect feedforward fusion. 
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IV. CONCLUSIONS 

 The results - some not shown here due to limited space -   

indicated the benefit of continuously rotating the IMU during 

the stationary initial alignment on the ground at a known 

location for faster, more accurate estimation of accelerometer 

bias. The reader is reminded that IMU rotation relative to the 

host vehicle does not demand the fine engineering, delicate 

assembly, and accurate moving parts found in a GINS.  

 Lack of observability caused by insufficient IMU 

maneuvering produced optimistic filter performance and 

biased estimation. Such detrimental qualities were mitigated 

by means of combining IMU rotation with PWC acceleration 

segments. Improved estimates of accelerometer bias, 

misalignment - especially in azimuth -, and rate-gyro drift 

then became available after maneuvers. Then, a switch from 

feedforward to a feedback configuration took place. On-the-

fly IMU calibration and INS reset were then accomplished by 

way of removing the estimated misalignment, sensor, and 

navigation errors. The diverging stand-alone INS solution 

causes model mismatch in the Kalman filter. The indirect 

feedforward approach with the linearized Kalman filter is 

only appropriate for short-term applications because model 

mismatch may cause filter divergence. For long duration 

applications, the extended Kalman filter arises by means of 

feedback of error estimates. Caution should be exercised 

when designing the feedback logic. Switching to feedback 

mode with full removal of misalignment, accelerometer bias, 

and rate gyro drift estimates should only occur after the 

diagonal values of filter covariance P decay to safe values 

determined by simulation to avoid filter divergence.  
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