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A Digital Instantaneous Frequency Measurement
Technique using High-Speed Analogue-to-Digital
Converters and Field Programmable Gate Arrays

Paul L Herselman†?, and Jacques E Cilliers†

Abstract—In modern information and sensor systems the
timely estimation of the carrier frequency of received signals is of
critical importance. This paper presents the Digital Instantaneous
Frequency Measurement (DIFM) technique, which can measure
the carrier frequency of a received waveform within a fraction
of a microsecond. The resulting frequency range, resolution and
accuracy of the system are scalable. The theoretical background
and derivation of the technique, followed by the practical imple-
mentation of the technique on modern digital signal processing
hardware will be presented. The paper concludes with functional
hardware simulations as well as quantitative measurements on a
prototype system.

Index Terms—instantaneous frequency measurement, elec-
tronic support measures, estimation theory, digital signal pro-
cessing

I. INTRODUCTION

The purpose of this research was to investigate the pos-
sibility of implementing a completely digital frequency esti-
mation technique analogous to the well-known Instantaneous
Frequency Measurement (IFM) technique [1] [2], which is in-
herently an analogue technique. It will be proven in this paper
that a digital implementation of the IFM is indeed possible;
yielding an all-digital estimation of the carrier frequency that is
insensitive to the input signal power [3] [4]. Most importantly,
it will be shown that the digital signal processing hardware
requirements for a DIFM with comparable performance to the
well-established analogue IFM systems are already available
in the modern mid-sized Field Programmable Gate Array
(FGPA).

Near instantaneous (sub-microsecond) estimation of the car-
rier frequency of a received waveform is of critical importance
in electronic support measure subsystems (e.g. digital receiver)
of an electronic warfare system [5]. A number of techniques
are currently used to perform this function. The most common
technique used is the all-analogue IFM technique, which will
be described later. The analogue output of the IFM can be
digitised and combined with basic digital signal processing
to yield a Digital Frequency Discriminator (DFD). In more
advanced systems, multiple IFM’s are used in a single DFD
to provide increased accuracy and/or bandwidth. Another
technique that is regularly used in digital receiver systems
is the Discrete Fourier Transform (DFT), which is typically

†Defence Peace, Safety and Security (DPSS), Council for Scientific and
Industrial Research (CSIR), PO Box 395, 0001 Pretoria, South Africa.

?Author for correspondence. Email: pherselman@csir.co.za.

implemented on a digital signal processor or an FPGA. The
DFT is fed with a sampled and quantised replica of the in-
put waveform generated by an Analogue-to-Digital Converter
(ADC). The DFT measures the received waveforms’ spectral
response aliased into the 0 Hz to fs/2 frequency range, where
fs is the ADC sampling rate. The DFT has the important
characteristic that it can estimate the spectral response of
multiple time-overlapping received waveforms concurrently,
whereas the IFM would yield an erroneous response in such a
situation. However, the DFT has a significant disadvantage in
terms of processing time, even with today’s advanced FPGAs
and digital signal processors. For this reason, the IFM is still
the preferred frequency estimation technique employed in a
number of electronic support measure systems.

II. BASIC IFM AND DFD PRINCIPLES

The basic principle and theory of the IFM and DFD
are well documented [1] [5]. In summary, consider a given
monochromatic sinusoidal input signal,

y(t) = A0 cos(2πf0t) , (1)

where A0 is the signal amplitude and f0 is the frequency of
the sinusoidal signal. This signal is split into two paths using a
3-dB coupler (Fig. 1). One of the resultant signals is delayed
by a given time delay, τ . The product of the signal and its
delayed replica is then produced by means of an analogue
diode mixer. The output signal,

ymix(t) =
A2

0

4
cos(2πf0t) cos[2πf0(t− τ)]

=
A2

0

8
[cos(2πf0τ) + cos(4πf0t− 2πf0τ)] , (2)

consists of a constant term that is a function of the amplitude,
frequency and time delay and a second harmonic term of the
input frequency. If the output of the mixer is filtered with a
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Fig. 1. Block diagrammatic description of a basic digital frequency
discriminator.
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low-pass filter with a cut-off frequency lower than the second
harmonic, essentially only the constant term will be retained:

yfilt(t) =
A2

0

8
[|H(0)| cos(2πf0τ) + |H(2f0)|

× cos(4πf0t− 2πf0τ + 6 H(2f0))]

≈ A2
0

8
|H(0)| cos(2πf0τ) , (3)

where h(t) and H(f) are the time and frequency domain
response of the low-pass filter respectively and |H(2f0)| <<
|H(0)|. In (3), τ is chosen such that the argument of the cosine
function spans the principal value range of the inverse cosine
function, i.e. 2πf0τ ∈ [0, 2π] for all f0. For a characterized
filter and a fixed amplitude sinusoidal input signal, the centre
frequency of the signal can be estimated as:

f̂0 =
1

2πτ
arccos

[
8yfilt(t)
A2

0H(0)

]
. (4)

It is common practice to sample the filter output using
an ADC, yielding the sampled and quantized representation
yfilt(tn),where tn = nts, n is the sample index and ts the
sampling period of the ADC. A look-up table can then be in-
stantiated to perform the filter output to centre frequency map-
ping represented in (4). It is important to realize that equations
(2)-(4) are only valid for a fixed amplitude monochromatic
input signal without any additive noise (amplitude or phase)
and for ideal analogue components and an ideal ADC. In
the presence of noise and/or multiple carriers with significant
amplitude, the performance of the IFM is adversely affected. It
is also greatly influenced by the non-ideal, non-linear response
of the mixer and ADC especially.

III. CALCULATION OF THE OPTIMAL TIME DELAY τ

It has previously been stated that a frequency range of
interest has to be chosen that has a one-to-one mapping
between input frequency and output value for (3). Since

lim
f0→0

[cos(2πf0τ)] = 1 , (5)

the maximum one-to-one input frequency, f0(max), can be
calculated as

τ =
1

2πf0(max)
arccos(−1)

=
1

2πf0(max)
(1 + 2n)π , n = 0, 1, 2, . . .

=
1

2f0(max)
, n = 0 . (6)

The optimum time delay is the inverse of twice the maximum
input frequency. This, together with the fact that the maximum
unambiguous input frequency for an ADC is half the sampling
rate (also called the Nyquist rate) [6], led the authors to believe
that a digital implementation of the IFM technique might prove
to be an elegant solution.

IV. THEORY OF THE DIFM TECHIQUE

A. Basic DIFM
Suppose a DIFM is to be implemented with a frequency

range equal to the information bandwidth (IBW) of a specific
ADC, IBW = fs/2. If the unambiguous input frequency
range [0, fs/2) is chosen, the optimal time delay can be
calculated from (6) as

τ =
1

2 fs

2

=
1
fs

= ts . (7)

Consider the sampled and quantized representation of the input
signal as defined in (1):

yq(n) = Q[y(nts)] = Q

[
A0 cos

(
2π

f0

fs
n

)]

= Q[A0 cos(2πF0n)] , F0 =
f0

fs

=
⌊

2A0

D
2N−1 cos(2πF0n) + 0.5

⌋

=
A0

D
2N cos(2πF0n) + εq(n) , (8)

where D is the peak-to-peak voltage dynamic range, N is the
number of bits, F0 is the normalized input frequency, Q{ } is
the quantization operator and εq(n) is the quantization error.
The digital equivalent of the analogue mixer output can be
calculated as:

ymix(n) = yq(n)yq(n− 1)

=
A2

0

D2
22N−1 [cos(2πF0)

+ cos(4πF0n− 2πF0)]

+
A0

D
2N {cos(2πF0n)εq(n− 1)

+ cos[2πF0(n− 1)]εq(n)}
+ εq(n)εq(n− 1) , (9)

It is important to realize that the frequency component 4πF0n,
which is the 2nd harmonic in (9), folds back in the sampled
domain into the [0, fs/2) region whenever f0 > fs/4. The
output of this mixing product is then processed with a digital
low-pass Finite Impulse Response (FIR) filter. The FIR filter
sums a series of weighted samples of the input signal to
produce the output:

yfilt(n) =
N∑

k=0

ckymix(n− k)

=
A2

0

D2
22N−1 [|HLPF (0)| cos(2πF0)

+ |HLPF (F ′0)| cos (2πF ′0n− 2πF0

+ 6 HLPF (F ′0))] + ε′q(n) . (10)

where ck are the FIR filter coefficients, |HLPF (0)| is the
magnitude response of the FIR filter at 0 Hz, |HLPF (F ′0)| is
the magnitude response of the FIR filter at F ′0, 6 HLPF (F ′0) is
the phase response of the FIR filter at F ′0, ε′q(n) is a derived
error signal due to quantization and

F ′0 =
{

2F0 if f0 ≤ fs/4
1− 2F0 if f0 > fs/4 . (11)
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Equation (11) implies that the frequency response of the DIFM
is symmetrical around fs/4. The output of this filter is used
as the input to a look-up table that will output the estimated
frequency of the input signal. The equivalent function of this
look-up table can be expressed mathematically as

yout(n) =
2Nout − 1

2π

× arccos
(

yfilt(n)D2

A2
022N−1 |HLPF (0)|

)
, (12)

where Nout is the number of bits used to represent the output
word.

The advantage of this digital implementation is that the
mixing product is relatively linear, which minimizes spurious
responses. Furthermore, the filter response can be adapted or
optimized for the specific requirements, that is, fast response
versus measurement accuracy.

B. Amplitude-insensitive DIFM

The DIFM as described above will exhibit the same ampli-
tude sensitivity as would the analogue IFM. With the use of au-
tomatic gain control amplifiers and equalization filters, this can
be negated to a certain degree. However, if the amplitude of
the input signal to the ADC, A0, could be available timeously
as a digital value, a digital division operation could yield an
output that is relatively insensitive to the input amplitude:

ydiv(n) =
yfilt(n)
A2(n)

=
yfilt(n)

[A0 + εa(n)]2

≈ yfilt(n)
A2

0

, A0 À εa(n)

=
22N−1

D2
[|HLPF (0)| cos(2πF0)

+ |HLPF (F ′0)| cos (2πF ′0n− 2πF0

+ 6 HLPF (F ′0))] +
ε′q(n)
A2

0

, (13)

where A(n) is the digital estimation of the instantaneous am-
plitude and εa(n) is the error associated with this estimation.
The quotient can then be used as the input to the arccos{ }
operator, which could be implemented in numerous ways,
with the most popular being a memory-based look-up table.
The look-up table output, yout(n), finally yields an estimation
of the input frequency, F0, that is insensitive to the input
amplitude, A0.

When there is no time shift between the two multiplication
operands in (9), i.e.

y′mix(n) = yq(n)yq(n− 0) = y2
q (n) , (14)

it is clear from (10) that the multiplication output will yield
an estimate of the input amplitude if passed through the same
low-pass FIR filter

y′filt(n) =
A2

0

D2
22N−1 [|HLPF (0)|

+ |HLPF (F ′0)| cos (2πF ′0n + 6 HLPF (F ′0))]
+ ε′′q (n) . (15)

Substituting A2(n) in (13) with y′filt(n) yields the quotient

ydiv(n) =
A2

0
D2 22N−1a(n) + ε′q(n)
A2

0
D2 22N−1b(n) + ε′′q (n)

≈ cos(2πF0) + ε′′′q (n) +
|HLPF (F ′0)|
|HLPF (0)| ×

cos (2πF ′0n− 2πF0 + 6 HLPF (F ′0))
≈ cos(2πF0) (16)

if

max
{ |HLPF (F ′0)|
|HLPF (0)| , ε′′′q (n)

}
¿ cos(2πF0) , (17)

where

a(n) = |HLPF (0)| cos(2πF0) + |HLPF (F ′0)|
× cos (2πF ′0n− 2πF0 + 6 HLPF (F ′0))

b(n) = |HLPF (0)|+ |HLPF (F ′0)|
× cos (2πF ′0n + 6 HLPF (F ′0)) (18)

The arccos{ } operator yields an estimation of the radian
normalized frequency

ylt(n) ≈ 2πF0 = 2π
f0

fs
. (19)

The same digital architecture (hardware) yielding yfilt(n) is
therefore ideally suited to calculate y′filt(n). This is done by
either duplicating the hardware and performing the calculation
in parallel or by timesharing the same physical hardware
and time multiplexing the input and output to take either a
duplicate of the input as the two operands or the input and a
shifted replica of the input as the two operands. The output of
the hardware would then have to be demultiplexed, yielding
the two filter outputs simultaneously.

One of the main advantages of the technique as described
in equations (14)-(19) is that the amplitude measurement is
precisely aligned with the estimation in (10). Timing is internal
to the digital signal processor and no external calibration
and/or alignment is required.

V. RESULTS

An example of the amplitude-insensitive DIFM technique
has been designed for implementation on a digital system
comprising a 1.2 Gigasamples Per Second (GSPS) Atmel
TS83102G0B ADC [7] that is connected to an Altera Stratix
1S30 FPGA [8] via two Atmel TS81102G0 demultiplexers
[9], which lowers the data rate by a factor of 16 (Fig. 2). The
example digital hardware can be configured as a Digital Radio
Frequency Memory (DRFM) module, performing the function
of a digitally controlled, active, coherent repeater.

The multiplication and FIR filter operations as described by
(9), (10), (14) and (15) have been adapted for this parallelized
data architecture. A 24th-order Chebychev window low-pass
FIR filter was realized, yielding a cut-off frequency of 100
MHz and stop-band rejection exceeding 48 dB. This yielded
a DIFM passband of 500 MHz. Furthermore, 9-bit multipliers
were used for most multiplication operations, the output of
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Fig. 2. DRFM hardware for implementation of DIFM.
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Fig. 3. Simulation results as a function of time with f0 = 550 MHz for SNR
∈ {60 dB,40 dB,20 dB}.

the FIR filters were cast as 12-bit integers, the inverse op-
eration was implemented as a 12x12-bit look-up table with
15 dB dynamic range, and the final arccos{ } operation was
implemented as a 12x10-bit look-up table.

The performance of this implementation was simulated in
the MATLAB numerical computation environment with the
main results presented below. A monochromatic input signal,
having an amplitude of half of the ADC full-scale value, was
injected into the DIFM and the output signal was captured
for a duration of 20 µs. Coloured noise was added with a
flat frequency spectrum between 50 - 550 MHz for different
Signal-to-Noise Ratios (SNR’s). The simulation results with
f0 = 550 MHz are presented in Fig. 3. With adequate SNR
the DIFM output is centred on the input frequency with a
maximum deviation of ±2 MHz. As the SNR decreases,
however, the mean output declines and the output noise
increases. The main reason for this drop in the mean output is
that the amplitude estimation is contaminated by the noise as
the SNR decreases. The mean deviation, maximum absolute
error and the Root-Mean-Squared (RMS) error are plotted
as a function of frequency for the various SNRs in Fig. 4.
The bias introduced for low SNR signals is obvious (Fig. 4,
bottom). The maximum absolute errors and RMS errors were
calculated relative to the measured mean output. At SNR levels
down to 40 dB it is clear that the error is dominated by the
quantization levels of the DIFM, as the error does not increase
significantly. The influence of noise is clearly visible at SNR
levels at and below 20 dB. The latency of this implementation
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Fig. 4. Simulation results as a function of input frequency. (a) SNR = 60
dB, (b) SNR = 40 dB, (c) SNR = 20 dB.

was simulated as 13 FPGA clock cycles, which at the given
clock rate yielded

τDIF M = 13 cycles× 16
fs

= 173.3̇ ns . (20)

The DIFM was designed to re-use the same hardware for
the computation of the initial frequency estimate and the
amplitude squared estimate, yielding a throughput rate of half
the FPGA clock rate,

fDIFM =
fs

2× 16
= 37.5 MHz . (21)

Re-using the hardware realizes a smaller solution that requires
less FPGA processing power. The Quartus II Ver. 5.1 firmware
fitting and timing analysis software [10] predicted a maximum
clock speed in excess of 75 MHz and FPGA resource usage
of less than 10 % for the 1S30 device. This bodes well for
the implementation of the DIFM in parallel to the DRFM
control firmware on the FPGA in the example implementation
hardware depicted in Fig. 2. The major advantage of having
this parallel frequency estimation is that the estimate is exactly
aligned with the DRFM data and no external alignment is
required. Furthermore, there is no need for additional analog
down-conversion or signal conditioning hardware.

The minimum pulse width yielding a stable output was
simulated as 48 ADC samples,

TDIFM =
48
fs

= 40 ns . (22)

The illustrative implementation was conducted on a custom
built hardware module and the results were verified by visual
inspection by sweeping the input frequency and power from
50 MHz to 550 MHz and 0 dBm to -15 dBm, respectively. The
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TABLE I
PERFORMANCE COMPARISON WITH OPERATIONAL SYSTEMS.

Performance indicator L-Band system S-Band sytem C-Band system X-Band system Ku-Band system DIFM
Bandwidth (MHz) 1060 2120 4240 4240 6360 500
Resolution (MHz) 0.52 1.04 2.08 2.08 3.12 1
RMS accuracy (MHz) 1.25 2.5 5.0 6.5 12.0 <2
Latency (ns) 185 150 135 135 130 173
Minimum pulsewidth (ns) 95 60 45 45 40 40
Dynamic range (dB) 70 70 70 65 N/A 15

simulated results are compared to that of operational systems
[5] in Table I. It is important to note that operational systems
obtain the high dynamic range performance by first detecting
the signal amplitude and then setting the gain of the front-end
receiver to yield fixed input amplitude to the IFM. The DIFM
has an instantaneous dynamic range of 15 dB that is limited
by the dynamic range of the digital inversion operator and
can be enhanced by increasing the number of bits used during
the inversion operation or by using a more complex inversion
operation. Furthermore, the DIFM bandwidth is limited by the
clock rate of the ADC and the order of the FIR filter, with the
relationship being approximately

BWDIFM =
fs

2.4
. (23)

The DIFM performance can be increased significantly at
the expense of using more FPGA processing resources. For
example, latency can be improved by adopting a fully-parallel
solution that requires almost double the resources, resolution
can be increased by expanding the width of the final look-up
table and accuracy can be improved by increasing the width
of the multipliers and inverse operator or by raising the order
of the low-pass filters.

VI. CONCLUSIONS

We have shown that the DIFM is a viable frequency estima-
tion technique that can be implemented efficiently in current
commercial hardware, yielding results comparable to existing
analogue techniques. The main shortcoming of the example
implementation is the instantaneous bandwidth obtainable.
With the rapid increase in ADC clock rates, however, this
might even improve DIFM bandwidth performance beyond
that of current operational systems. Single ADC clock rates
exceeding 2.5 GSPS and time-interleaved ADC clock rates of
up to 10 GSPS have been reported [11] [12] that would yield
a DIFM with an approximate bandwidth of 4.16 GHz.

One of the key features of the DIFM technique, however, is
its flexibility and ability to be optimized for specific require-
ments. It is also possible to change its characteristics in real-
time by changing the filter coefficients on-the-fly. The biasing
effect at low SNR levels can be reduced by designing the FIR
filters to have lower cut-off frequencies. The adverse effect of
doing this would be increased latency, once again highlighting
the importance of performing a proper requirement analysis
and trade-off study before designing a DIFM.

The DIFM is insensitive to temperature and does not require
periodic calibration to maintain its accuracy. These character-
istics make the DIFM operationally superior to its analogue
counterparts [13].
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