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ABSTRACT

We formulate distributed estimation protocols built on Kalman filter
implementations to be embedded in sensor networks applications,
namely those related to navigation problems. We have pursued pro-
tocols that (a) maximizes energy savings and (b) avoids the synchro-
nization typically required to implement consensus protocols. Our
approach leads to robust algorithms that draw a minimum of energy
from the network, increasing autonomy, crucial in defense and criti-
cal applications. A pilot example validates the proposed algorithms,
showing that the distributed setup is able to match the performance
of a central node that fuses the estimates captured across the net-
work.

Index Terms— Distributed estimation, data fusion, Kalman fil-
tering, inertial navigation

1. INTRODUCTION

We propose simple yet robust distributed algorithms to perform data
fusion in a network of nodes, capturing space-time data related to an
event of interest taking place in the field [1, 2]. Besides typical sen-
sor networks applications, after proper linearization and discretiza-
tion, the algorithms presented in this work may also be employed for
fusion of diverse sensors in aided inertial navigation problems. With
the proper errors model, it also fits typical problems in the strap-
down navigation context: initial alignment and sensors calibration.
More specifically, applications for the proposed framework range
from UAV autonomous operation to aircraft carrier navigation aid-
ing, sounding rocket tracking by ground radar stations [3], as well as
aided INS [4, 5].

By building on individual local Kalman filters (LKFs), which
represent a lower performance bound, we establish simple fusion
protocols that are able to outperform the LKF setup, also matching
the performance of a centralized fusion strategy, employed as bench-
mark. Our goal is to arrive at distributed fusion protocols that are (a)
fully distributed, (b) preserve network autonomy and (c) approach,
as much as possible, the performance of a global Kalman solution,
which sets the network performance goal.

The presented formulation and solutions employ general mod-
els, and they are evaluated via a simple yet representative 2D vehicle
tracking problem, which conceptually captures all the relevant issues
in distributed estimation implementations. Inspired by recent results
on distributed adaptive filtering [7]–[10], we also start exploring the
concept of Adaptive Networks in the context of inertial navigation.
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Fig. 1. Network of sensors.

2. THE RISE OF DISTRIBUTED ESTIMATION

What is a distributed algorithm? Different answers have been given
in the literature, and the question is open to some dispute. More
recently, the notion of a fully distributed algorithm arose in the sen-
sor networks and control community. In the sense employed in this
work, without discussing momentarily the need for such systems,
an algorithm embedded in a network of sensors is considered fully
distributed if any particular sensor/node relies solely on local infor-
mation, and exchanges information, if or when necessary, only with
its direct neighbors (i.e., peer-to-peer protocols, or simply “P2P”).
Routing protocols are also possible, which may lead to distributed
implementations as well, but will not be covered here.

2.1. Why distributed?

In several quotidian situations, space-time events take place in the
field, and often prompt action is necessary. Average temperature
estimation, gas leakage detection, pollution control, target tracking,
source description and localization, to name a few, are among the
emerging applications in sensor networks, as well as in the newborn
field of adaptive networks [1, 2, 9].

By spreading sensors out in the field, the probability of event
capture and coverage is increased, and since a great deal of process-
ing is required to deal with the large amounts of data captured by
the nodes, an efficient strategy for processing is required. It is well
known that a node spends an order of magnitude more energy and
communication resources to send a bit for processing to a central
node, whose result must be transmitted afterwards back to the node,
than if the bit is locally processed, which is known in the literature as
“in-network” processing [1]. In other words, distributed processing
means network autonomy. Besides, the need of a powerful proces-
sor, located at the central node, in charge of the processing tasks, is
avoided, and robustness is achieved as a byproduct.

In sounding rocket tracking and aided INS for guidance and nav-
igation, a suit of sensors capture motion-related data so that position,
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Fig. 2. Heterogeneous network of sensors.

velocity and attitude can be accurately estimated, as well as the sen-
sor errors to perform proper calibration of the instruments. Integra-
tion of the various sensors by distributing the computational burden
among the sensor nodes is highly desirable for the aforementioned
reasons.

2.2. Cooperation and adaptivity

Each event leaves a space-time signature in the field that must be
captured by the network. It is typically time-varying, which suggests
that another desirable feature to embed in the nodes is the ability
to learn from the captured data, or adaptivity [1, 9, 10]. Several
learning rules are possible [9, 10], and when the underlying process
of interest may be modeled as a Markov process, the Kalman filter
is particularly handy.

The distributed solution, to a certain extent, can be understood as
a factorization of the global optimization problem into subproblems,
placed at the nodes, with each node attempting to solve a small frac-
tion of the general problem. However, it becomes necessary to ag-
gregate these individual solutions, obtained with limited local data,
in order to recover, or to approach, as much as possible, the per-
formance of the original global solution, running in a central node
aware of everything.

This aggregation procedure is generally referred to as data fu-
sion, and implies cooperation, directly or indirectly, among the nodes.
Thus, cooperation is just general terminology to some sort of data
fusion procedure that takes place at the node level, throughout the
distributed network.

3. PROBLEM FORMULATION

In its complete formulation, the problem of inertial navigation in-
volves the solution of non-linear and time-varying equations. Upon
linearization and discretization, typical estimation problems that arise
in navigation applications may be well captured by Markov models.
Examples of such problems are initial alignment and calibration of
inertial sensors in strapdown solutions by means of integration with
auxiliary sensors, such as magnetometers, GPS receiver, altimeter,
etc, yielding improved accuracy (see Fig. 2).

We proceed by assuming that the process of interest follows a
state-space model of the form

xi+1 = Fixi + Giui (1)

Where Fi and Gi are M × M known matrices, so that the state
dimension is M < N , and ui is an M × 1 white process with
covariance matrix Qi. The state of the process is only indirectly
observed by a network of N sensors via a linear measurement model.
Node k captures measurements about the process xi at time i via

yk,i = Hk,ixi + vk,i (2)

where vk,i is a white sequence with covariance matrix Rk,i which
models measurement noise, and Hk,i is a node-dependent local ob-
servation matrix, which accounts for heterogeneous sensors. Con-
ceptually, the goal is to reconstruct the process trajectory {xj}j=0,...,i

from the measurements {y`,j}j=0,...,i collected at the ` = 1, . . . , N
nodes.

3.1. Global Kalman filter (GKF)

A natural tool to tackle such problem is the Kalman filter (KF). In a
typical solution to the problem, all the measurements yk,i collected
throughout the network are stacked onto a global column vector

yi
∆
=




y1,i

y2,i

...
yN,i


 (3)

resulting in the global quantities

Hi
∆
= col{H1,i, H2,i, . . . , HN,i} (4)

and

Ri
∆
= diag{R1,i, R2,i, . . . , RN,i} (5)

The global vector (3) is then presented to a large global Kalman filter
(GKF), located at a hypothetical central node, whose equations in the
prediction form are given by [6]

ei = yi −Hix̂i (6)
Re,i = HiPiH

∗
i + Ri (7)

Kp,i = FiPiH
∗
i R−1

e,i (8)
Pi+1 = FiPiF

∗
i + GiQiG

∗
i −Kp,iRe,iK

∗
p,i (9)

x̂i+1 = Fix̂i + Kp,iei + Giui (10)

In the above equations, x̂i
∆
= x̂i|i−1 is the process estimate delivered

by the GKF, and it considers all the observations gathered across the
network up to time i − 1. The quantity ei is known as the process
innovation, whose covariance matrix is given by Re,i. Defining the
state error vector as x̃i = xi− x̂i|i−1, then follows its corresponding

covariance matrix Pi
∆
= Ex̃ix̃

∗
i , and the prediction Kalman gain

Kp,i. The vector ui = Eui captures the input mean trajectory.
There are several problems with the GKF solution (6)–(10), be-

sides those mentioned earlier. One of the ultimate problems is the
need to invert large matrices (e.g., Re,i), potentially giving rise to
numerical instabilities. Another is the need for a powerful proces-
sor to handle such computations. On the other hand, the GKF has a
strong conceptual appeal, in the sense that it can be considered as a
lower bound on the state mean-square error (MSE). Any distributed
solution should aim at this bound.

3.2. Local Kalman filters (LKF)

At the other end of the solutions’ spectrum, is the LKF, in which
stand-alone, non-cooperative KFs are run at the nodes. As matter
of fact, isolated KFs do not actually represent a solution, since they
are not aimed at the global solution. However, they may be viewed
as the building blocks, over which cooperative protocols may be im-
plemented in order to approach, as much as possible, the global so-
lution. Therefore, they may also be considered as an MSE upper
bound.



The optimal estimate delivered by the individual KF at node k,
time i, considering all the local observations (i.e., yk,i) up to time i−
1 is denoted by x̂k,i|i−1

∆
= x̂k,i, and it is obtained, in the prediction

form, via

ek,i = yk,i −Hk,ix̂k,i (11)
Re,k,i = Hk,iPk,iH

∗
k,i + Rk,i (12)

Kp,k,i = FiPk,iH
∗
k,iR

−1
e,k,i (13)

Pk,i+1 = FiPk,i+1F
∗
i + GiQiG

∗
i −Kp,k,iRe,k,iK

∗
p,k,i

(14)
x̂k,i+1 = Fix̂k,i + Kp,k,iek,i + Giui (15)

where now Pk,i
∆
= Ex̃k,ix̃

∗
k,i and Re,k,i = Eek,ie

∗
k,i.

4. DISTRIBUTED SENSOR FUSION

As previously suggested, LKFs will be employed as the building
blocks of our distributed estimation algorithms. Each sensor in the
network is equipped with a KF of the form (11–15), which can com-
municate with its nearby KFs, in compliance with the existing com-
munication topology. On top of the existing individual KFs, we
adopt cooperation protocols that perform data fusion in a distributed
manner. More specifically, the KFs exchange their estimates x̂k,i

with their direct neighbors. Upon reception, the estimates from the
neighborhood are aggregated, and a fused local estimate is gener-
ated, with better statistical properties. Different aggregation rules
lead to different performances, in terms of state mean square error
and computational complexity. Here we will explore a simple fusion
technique, exposed in the sequel.

4.1. Distributed convex fusion

One simple way to achieve data fusion is to resort to locally-convex
averaging procedures. In this scheme, the local KFs diffuse their es-
timates to their neighboring nodes across the network, following a
diffusion mode of cooperation [9, 10]. As consequence, a particular
node, say k, will receive estimates from its direct neighbors, accord-
ing to the network topology. Upon reception of such estimates, a
better estimate for xi can be obtained via a simple local fusion rule:

xk,i =
∑

`∈Nk

ck`x̂`,i ,
∑

`

ck` = 1 (16)

where {ck`} is a set of local combiners that fuse the estimates
{x̂`,i}`∈Nk , received from the neighborhood, into a better estimate
xk,i. Here Nk stands for node k’s neighborhood, which is the set of
nodes directly connected to node k, including itself.

The rule (16) may be interpreted as a weighted least-squares fu-
sion of the nearby estimates via the combiners ck`, which have to
be designed somehow. Such combiners may be topology-dependent
only, or may also take into account the statistics of the received esti-
mates in order to improve the fusion process.

Typical designs for the combiners c’s that account only for net-
work topology are given by the Metropolis, Laplacian and nearest
neighbor rules [8, 10]. The Metropolis rule is defined as follows.
Let nk and n` denote the degree for nodes k and `, i.e., nk = |Nk|,
and choose





ck` = 1/ max(nk, n`) if k 6= ` are linked
ck` = 0 for k and ` not linked
ckk = 1−∑

`∈Nk/k ck` for k = `
(17)

Now, note that the set of all combiners in the network render a matrix
C = [ck`] which provides information on the network topology: a
nonzero entry ck` means nodes k and ` are connected. From C we
may define the Laplacian rule:

C = IN − κL (18)

where L = D − Ad, with D = diag{n1, . . . , nN}, κ = 1/nmax,
where nmax is the maximum node degree, and Ad is the N × N
network adjacent matrix, formed as

[Ad]k` =

{
1 if k and ` are linked
0 otherwise

(19)

By definition, a node is linked to itself, i.e., [Ad]kk = 1. Last, but not
least, in the nearest neighbor rule the combiners matrix C is defined
as

{
ck` = 1

|Nk| , ` ∈ Nk

ck` = 0 otherwise

Summarizing, our distributed algorithm comprises (a) Set up a net-
work of KFs given by (11)–(15), (b) For time i ≥ 0, and for every
node k in the network, do

1. Exchange estimates among neighboring KFs

2. Implement local fusion (16)

The resulting quantity xk,i may be regarded as a simple fusion of
node k’s neighboring estimates, with improved statistical properties,
and can be readily used.

Another way to design the c’s involves statistical information
about the received neighboring estimates {x̂`,i}`∈Nk . For instance,
a possible design accounting for the estimates statistics is [6]:

ck` =
1

akσ2
`

, ak =
∑

`∈Nk

1

σ2
`

(20)

Here σ2
` is a measure of the estimation error variance, which in this

work is replaced, for the sake of simplicity, by the measurement error
variance, assuming all LKF estimation errors converge. Intuitively,
(20) says that if an estimate has a larger variance, then it should
be assigned a smaller weight. For Gaussian signals and depending
on how σ2

` is computed, schemes of this kind can be interpreted as
maximum likelihood fusion.

4.2. Centralized fusion

In this implementation, the network of LKFs report their local esti-
mates at each iteration to a central node, in charge of fusing all the
received estimates into a better estimate, which is then sent back to
the nodes for local use. The fusion rule employed at the central node
is given by

xc
i =

N∑

k=1

ckx̂k,i ,
∑

k

ck = 1 (21)

for a set of convex combiners ck. This strategy, although feasible,
clearly defeats the original purpose of a fully distributed implemen-
tation, and it will be used for benchmark only. Note that the role of
the central node here is only to implement the convex fusion (21),
and it is not to be confused with the operation of the global Kalman
filter, presented in Section 3.1. In other words, the central node here
does not run a global Kalman filter.



Fig. 3. Modes of cooperation in an adaptive network.

4.3. Adaptive networks: a perspective

Another strategy that we will glance at is based on recent theory
developed in the context of distributed adaptive filtering: adaptive
networks [7]–[10]. To begin with, as illustrated by Fig. 3, other
modes of cooperation are possible, besides the diffusion protocol de-
scribed in Section 4.1 and embedded in the local convex fusion rule
(16). When operating in the incremental mode of cooperation, nodes
circulate their estimates across a pre-selected cycle, whereby a node
receives an estimate from its previous node in the cycle, updates it
and pass it to the next node. In a consensus mode, nodes repeat the
diffusion exchange of information a number of times, so that the av-
eraging procedure is improved. The probabilistic diffusion mode is
a relaxation of the full diffusion mode, in order to save energy and
communication resources (refer to [9, 10] for details). On top of that,
alternative learning rules could be used.

Another major difference in an adaptive network is that, in ad-
dition to the fusion step (16), the resulting aggregate estimate xk,i

is injected into the local learning rule, the Kalman update equation
in our case. As a consequence, a possible “diffusion Kalman filter”
could be

xk,i =
∑

`∈Nk

ck`x̂`,i ,
∑

`

ck` = 1 (22)

ek,i = yk,i −Hk,ixk,i (23)
Re,k,i = Hk,iPk,iH

∗
k,i + Rk,i (24)

Kp,k,i = FiPk,iH
∗
k,iR

−1
e,k,i (25)

Pk,i+1 = FiPk,i+1F
∗
i + GiQiG

∗
i −Kp,k,iRe,k,iK

∗
p,k,i

(26)
x̂k,i+1 = Fixk,i + Kp,k,iek,i + Giui (27)

Algorithm (22) is a first experiment inspired on the dramatic
improvement experienced by networks that run adaptive protocols
where the fused estimates are injected into the update “learning”
equation. In the Kalman case, where the generated estimates are
already mean-square optimal in some sense (for instance, locally,
or globally), additional steps might be necessary in order to handle
the correlation among estimates and drive performance closer to the
GKF.
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5. SIMULATION RESULTS

To evaluate the framework developed, we pose a vehicle tracking
problem in the plane. Despite its simplicity, this problem captures
the essence of the concepts involved in a typical distributed (adap-
tive) estimation scenario. Basically, the process of interest is imple-
mented with

F =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
, (28)

with θ = 4.8759o. Matrices G, Q and Hk,i are identity. The noise
covariance matrices are Rk,i = σ2

k ·I , where σ2
k is randomly chosen,

and so is the network topology. The state estimates are initialized
with zeros, and the state error covariance matrices are initialized with
ε−1I , where ε is a small number (For instance, 10−3).

We employ as performance bounds the individual LKF setup
from Section 3.2 and the global Kalman solution (GKF) from Sec-
tion 3.1. In this setup we compare the convex averaging distributed
algorithm (Section 4.1) with the centrally-fused estimates (21), em-
ployed for benchmark. We also present, as a first experiment, the
diffusion Kalman algorithm (Section 4.3).

Two curves are presented: the trajectories reconstructed via the
algorithms presented here, and the state propagated mean square er-
ror (MSE). The former compares the true vehicle trajectory against
the trajectory obtained by the distributed algorithms at a node picked
randomly from the network. The latter employs a network-averaged
MSE curve which captures the network average performance [9],
avoiding tedious comparisons among all the existing nodes. The
network average MSE is defined as

MSE(i) =
1

N

N∑

k=1

E‖x̃k,i‖2 (29)

Fig. 4 shows the settings for our example. The actual and es-
timated vehicle trajectories are depicted in Fig. 5, where the dotted
trajectory represents the true vehicle path.

The MSE curves for the all the algorithms are plotted in Fig.
6. Note how the distributed algorithm proposed in Section 4.1 out-
performs the individual LKFs, and even match the centrally-fused
estimates. The ensemble average curves were generated with 1000
experiments. As expected, the global solution (GKF) is the perfor-
mance “bound”. The diffusion KF was outperformed by the pure
distributed averaging procedures, however it was included to illus-
trate the potential of the method. If properly tuned, it is expected



−20 0 20

−20

0

20

Raw measurements

−20 0 20

−20

0

20

Distributed convex fusion 

−20 0 20

−20

0

20

Central fusion

−20 0 20

−20

0

20

Global (GKF)

Fig. 5. Trajectories for the algorithms. Captured at node 2.

0 50 100 150 200
2

4

6

8

10

12

14

Time  −  iterations

S
ta

te
  −

 M
S

E
 −

 n
et

w
or

k 
av

er
ag

e 
(d

B
)

0 50 100 150 200
2

4

6

8

10

12

14

Time  −  iterations

S
ta

te
  −

 M
S

E
 −

 n
et

w
or

k 
av

er
ag

e 
(d

B
)

Individual (LKF)
Global (GKF)
Central fusion (21)
Distributed fusion (16)

Individual (LKF)
Global (GKF)
Central fusion (21)
Diffusion − Section 4.3

Fig. 6. State mean square error.

to lead to considerably better results, as it is the case in its original
adaptive filtering scenario.

It is important to point out that these curves could be improved
by implementing consensus protocols, but at a much higher commu-
nication and energy cost (See Fig. 3).

6. CONCLUDING REMARKS AND FUTURE WORK

Unlike existing consensus protocols [11], we have pursued proto-
cols that (a) maximizes energy savings and (b) may avoid the syn-
chronization typically required to implement those protocols. Our
approach leads to quite robust algorithms that draw a minimum of
energy from the network, increasing autonomy, crucial in defense
and critical applications. The price paid is that the individual nodes’
performance may not be so close to the global solution. However,
the protocols presented in this work outperform the non-cooperative
solution, and match the performance of the centralized fusion, as
corroborated by simulations.

We are currently studying protocols that incorporate the state er-
ror covariance matrices Pk,i in the fusion process, which is expected
to further improve the estimates. Given two estimates x1 and x2,
with covariance matrices P1 and P2, respectively, the optimal fu-

sion rule in the mean-square sense is the rule

P−1x = P−1
1 x1 + P−1

2 x2 (30)

where x is the fused estimate, with corresponding covariance matrix
P . There are efficient strategies to circumvent the need to know the
global covariance matrix P , so that (30) can be easily generalized to
several estimates and applied in the distributed setup proposed here
[3].

We are also working to validate the results in more realistic
scenarios, accounting for sensor non-observability, non-linear state-
space models and other non-ideal practical considerations.
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