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Abstract: This work presents a technique to calculate 
bound states in both conduction and valence band in 
complex quantum well structures. QW physics and the 
Transfer Matrix (TM) formalism are discussed. 
Analytical solutions to solve 2x2 Hamiltonians, as well 
as numerical results from TM are presented too. The 
theoretical data are compared with results from the 
literature and measurements from actual device. The 
results show good agreement between all compared 
data, indicating that TMM has a great potential to be 
used in QWIP design. 
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I. INTRODUCTION 

The design of photodetectors capable to detect 
different bands simultaneously with high sensitivity 
have found in quantum wells infrared photodetectors a 
good alternative. To be able to design such devices, it 
is necessary to use theoretical approaches with enough 
accuracy to estimate the confined quantum wells (QW) 
energy levels and its respective wave functions (the 
eigenvalues and the eigenfunctions). Accuracy is very 
important to allow the estimation of the wavelength 
detected by a device using interband and intersubband 
transitions 

This work presents an approach to calculate the 
quantum wells confined energy levels and its wave 
functions in both valence and conduction bands using 
the Transfer Matrix Method (TMM). This is a versatile 
method in obtaining the transmission coefficient, the 
energy states and the corresponding wave functions of 
a QW structure with any potential profile. In this 
technique, the structure can be divided in N slices 
describing parts of the device, resulting in a matrix 
multiplication describing the propagation of a plane 
wave across the whole multilayer structure. 

The work starts with a description of the basics of 
QW physics and the TMM formalism. After, the 
analytical solution of the used Hamiltonian is 
described. The numerical estimation and the 
comparison with the literature data and measurements 
are shown in the fourth part. 

II. QUANTUM WELLS PHYSICS AND TMM 

It is necessary discuss some basic aspects about the 
physics of QW to understand how to find the confined 
energy levels and what Hamiltonians were used to 
calculate them. Also, will be described the 
mathematical tool used to solve the employed 
Hamiltonians. 

1. QW physics 
Heterostructures for QW devices are constructed in 

three forms: the single junction structures, often 
referred as simple heterostructures, the double junction 
structures, mostly referred as QW and multi-junction 
structures, called superlattices. These are show in 
Figure 1. Electron states in the structures are evaluated 
by assuming that the bulk and band structures remain 
applicable for the constituents, even though the 
physical dimension in one or more directions may be 
comparable to the lattice constant. Electron states in the 
structure are obtained by solving the wave equation for 
the potential distributions in the structure by using the 
bulk physical constants and by applying the known 
effective-mass approximation and the suitable 
boundary conditions (1). 

 
Figure 1: Heterostructures in QW. (A) single junction; (B) double 

junction ; (C) multi-junction (superlattice) (1). 

In QW, the potential profile is defined considering 
the joining of the band off-set of each constituent alloy. 
In this way, quantized energy levels are allowed 
confined in the wells, while continuum states are 
possible outside. Figure 2 shows a representation of 
potential profile of a multiple quantum wells (MQW).  

In the figure, the barriers and the wells are in 
different colors highlighting their band gaps defined by 
EgB and EgW, respectively. CBO and VBO stand for 
conduction and valence band off-sets, Ec and Ev the 
confined energy levels, z is the growing axis and V is 
energy axis as a function of z. 
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Figure 2: potential profile of a multiple quantum wells (2). 

In the effective mass approximation, the 
Schrödinger equation reads: 

−∇ ℏ�
�� ∇� + 	� = ��, 

Eq. 1 

where m is the effective mass and V is the potential. 
Here, the potential is due to three fonts: the potential 
from the alloys band off-set, the potential due to an 
external applied bias, necessary to operate 
photoconductive photodetectors, and the potential due 
to charge distribution. The total potential can be 
described as: 	�
��� = 	�� + 	���� +V�. Eq. 2 

There are many ways to calculate the bandstructure 
for semiconductors. This work will employ k.p method 
because this method provides an accurate description 
of the medium evaluated and it is simple to implent. In 
addition, using its simplest form is possible to describe 
the conduction and valence band in same way (2). In 
this case, if the z-axis is chosen as the growth direction, 
the wavefunction is separable into a lateral (x-y plane) 
part ψxy and a z part ψz. The lateral part is simply a 
plane wave with kinetic energy E|| (Exy). For the z part, 
ψz is a solution of   

− ��� ℏ�
�� ��� �(�) + 	�(�) = ���(�), 

Eq. 3 

such that � = �|| + ��. Taking into account that 
m=m(z) for different barrier and well materials, the 

operator 
��� does not commute with 

 �. Then Eq. 3 

requires ψz and 
 � �!(�)��  to be continuous at the 

interfaces between different materials (3). In this work, 
will be considered that there is no energy dispersion in 
the x-y plane, so E||=0 (special case with kx=ky=0). 
Finally, the probability interpretation of the 
wavefunction requires the normalization condition for 
the bound states potential and the solution to Eq. 3 has 
the mathematically form: 

�(�) = "#�$%� + &#'�$%�. 
Eq. 4 

The electronic wave functions that satisfy the 
Schrodinger equation with a periodic lattice potential in 
a bulk crystal are given by Bloch’s theorem: 

�(�) = #�$%�()$(�). 
Eq. 5 

The cell-periodic Bloch functions unk(z) depend on the 
band index n and the envelope function wave vector k. 

The wave functions �(�) form a complete set of states 
as do the wave functions based on Bloch functions at 
any other wave vector, including the wave vectors at 
special points in the Brilloin Zone. In treating the 
optical and electronic properties of direct gap 
semiconductors, it is natural to consider the zone-
center Γ-point Bloch functions ()$(�) for the used 
wave function expansions. From now, the reference to 
the k=0 index, was dropped for these functions. 

2. Analytical Solution of the Hamiltonian 
The total Hamiltonian H0 for the valence band can 

be written in two parts. The first part depends on the 
components of the wave vector (kx, ky, kz). The second 
part depends on strain components εxy, with a one-to-
one correspondence between terms kxky and εxy and 
their coefficients (4): *+ = * + *,, Eq. 6 

where *+ = 

−
./
//
01� + 2� −3�−3�4 1� − 2�

5� 00 5�5�4 00 5�4
1� − 2� 3�−3�4 1� + 2�78

88
9

| :32 , 32=
| :32 , 12=

| :32 , − 12=
| :32 , − 32=

 
Eq. 7 

and 1� = 1 + 1, , 2 = 2 + 2, , 5� = 5 + 5, , 3� = 3 + 3, . 
Eq. 8 

The expressions for the above matrix elements are 

1 = ? ℏ@ (2A)B CDE� + DF� + D��G, 
2 = ? ℏ@�(2A)B CDE� + DF� − 2D��G, 

5 = − ? ℏ@�(2A)B √3CDE� − DF�G
+ I ? ℏ@J(2A)B 2√3DEDF , 

3 = ? ℏ@J(2A)B 2√3CDE − IDFGD�; 

Eq. 9 

 

1, = −L�CMEE + MFF + M��G, 
2, = L�3 CMEE + MFF − 2M��G, 

5, = − LN3 √3CMEE + MFFG − I ?L′N3 B MEF , 
3 = L′N3 2√3CME� − IMF�G. 

Eq. 10 

The correspondence is ℏ@ (2A) ↔ −L� ≡ QR , ℏ@�(2A) ↔ LN3 ,ℏ@J(2A) ↔ L′N3 , D�DS ↔ M�S , I, T = U, V, �. 

Eq. 11 

The basis functions are 

Ec1

Ec2

Ev1
Ev2

Ec1

Ec2

Ev1
Ev2

Ec1

Ec2

Ev1
Ev2

Ec1

Ec2
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Conduction Band
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Continuum 
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VBO
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| :32 , 32= = − 1√2 |(W + IX) ↑=, 
| :32 , 12= = − 1√6 |(W + IX) ↓= + \23 |] ↑=, 
| :32 , − 12= = 1√6 |(W − IX) ↑= + \23 |] ↓=, 

| :32 , − 32= = 1√2 |(W − IX) ↓=. 
 

Eq. 12 

To make the calculation procedure easier, it is 
necessary to block-diagonalize the previous 
Hamiltonian in a 2x2 matrices. So, it was used a 
unitary transformation. The strain due to lattice 
constant difference was also considered. After this 
procedure, the Hamiltonian is re-written as (4): * = ^*_ 00 *`a, Eq. 13 

where 

*_ = − b1 + 2 + c 5d5d4 1 − 2 − ce
+ L�CMEE + MFF + M��G, 

 

*` = − b1 − 2 − c 5d5d4 1 + 2 + ce
+ L�CMEE + MFF + M��G 

 

Eq. 14 

with 5d = |5| − I|3|; P,Q,R, and S defined in Eq. 9. 
For the strained-lattice case, the strain is given by 

MEE = MFF = Q+ + Q(U)Q+ = M, 
M�� = −2 f �f  M, MEF=ME�=M�F=0. 

 

Eq. 15 

In the conduction band, the Hamiltonian is given by 

*g = ℏ�2A)∗ CDE� + DF� + D��G
+ f CMEE + MFF + M��G, 

 

Eq. 16 

where A)∗  is the electron effective mass and C1 is the 
deformation potential for the conduction band. Some 
definitions are important: QR = −L� , Q = f + QR , 

 
 

i��j = −2k ?1 + f �f  B M, 
 

Eq. 17 

c = 12 i��j . 
 

 

The reference [1] suggestion was considered and 
C1=2a/3, and av=a/3, were assumed. 

Recalling the Hamiltonian in the valence band, 
since the hydrostatic stress component L�CMEE + MFF +M��) only introduces a shift in the valence band, this 
term will be ignored temporally. It is important to state 
that the hole energy �l is taken to be positive 
downward: �l = −�. The solutions for the eigenvalues 

and corresponding eigenvectors of the upper 
Hamiltonian are the following (4): 

1. For the Heavy hole �l = 1 − m(2 + c)� + 5d5d4n �, 
 

?o ppo�ppB = b−(2 + c) + m(2 + c)� + 5d5d4n �−5d4 e 
 = ?1 − (2 + c) − �l−5d4 B. 
 

Eq. 18 

2. For the Light hole �l = 1 + m(2 + c)� + 5d5d4n �, 
 

?o `po�`pB = q 5d
−(2 + c) + r(2 + c)� + 5d5d4s �t = 

? 5d�l − 1 − (2 + c)B. 

Eq. 19 

There are other alternatives forms and solutions for 
both, upper and lower Hamiltonians, and c can be 
positive, if the strain is a compression, or positive, if 
the strain is a tension. 

The wave functions can be written as (before 
normalization) (4) �pp(u) = o pp#�$.vw:1= + o�pp#�$.vw:2=, 

 �pp (u) = ?o ppo�ppB #�$.v  

 

Eq. 20 

for heavy hole, and �`p(u) = o `p#�$.vw:1= + o�`p#�$.vw:2=, 
 �`p (u) = ?o `po�`pB #�$.v  

 

Eq. 21 

for light hole. Similar expressions hold for solutions 
using the other two bases |:3= and |:4= from the lower 
Hamiltonian. 

As cited in (4): The classification of heavy hole is 
mainly from the fact that at k=0, the wave function has 
only a component along the basis |:1= for the upper 
Hamiltonian and |:4= for the lower. These bases are 
linear combinations of |:3/2, ±3/2= basis functions. 
The other bases have a similar behave. Since the 
general valence-band structure of a strained semi-
conductor is distorted due to the effects of strains, it is 
natural to classify the heavy- and light-hole bands by 
their basis functions at k=0. In this way, at kx=ky=0, 
E=- c < 0 (HH), and E=+  c > 0 (LH); along the kz 

direction, it is obtained for both compression and 
tension, 

� = − ℏ�2A (@ − 2@�)D�� − c (**), 
� = − ℏ�2A (@ + 2@�)D�� + c (~*). 

 

Eq. 22 

3. The Transfer Matrix Method 
The next figure illustrates a heterostructure with the 

notation used in the work. The L and R domains are 
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often though not necessarily always semi-infinite, 
while the inner domains are finite (m=1,…,n). The 
entire middle region will be labeled M (from zl to zr). 

 
Figure 3: the heterostructure using the notation to be used in the 

TMM (5). 

To calculate the eigenenergies and the eigenvalues 
for a heterostructure as showed above, it is necessary to 
correlate the different domains using the imposed 
boundary conditions. The TM is a method to correlate 
different domains following the imposed boundary 
conditions to match the solutions. 

General Definitions 
The Transfer Matrix (TM) can be obtained by some 

numerical procedure equivalent to a numerical 
integration. The implementation admits different forms 
and thus different objects are defined in the literature 
and the term TM is used to denote these different 
objects. To denote these effects and the necessity to 
represent the medium described, the symbol α is 
introduced as a domain symbol, which corresponds to 
L or R for barriers and M for the well (5). 

By the previous assumption, α is considered as a 
domain of a certain material and �(�: �) is described as 
being a solution of the differential system describing 
the corresponding medium α. The notation (�: �) 
denotes any point z in the medium. Now, three 
different objects can be defined, following the 
classification suggested by (5): 

Full Transfer Matrix (FTM) denoted �(�: �, �+). 
This transfers amplitudes and derivatives from z to z0: 

��(�: �)�′(�: �)� = �(�: �, �+) ��(�: �+)�′(�: �+)�. Eq. 23 

where � is an N-vector, and M is an 2Nx2N matrix. 

Associated Transfer Matrix (ATM) denoted �(�: �, �+). This transfers the amplitude � and the 
linear differential form �. Thus: 

�(�) = &(�) ��(�)�� + 1(�)�(�) 

� �(�: �)�′(�: �)� = �(�: �, �+) � �(�: �+)�′(�: �+)� 
�(�: �) = 1(�: �)�(�: �) + &(�: �)�′(�: �) 

Eq. 24 

Coefficient Transfer Matrix (CTM) denoted �(�′, �). Note that this refers to a substantially 
different situation. In this case two different domains 
are related. And now, the media α can be assumed, 
while α’  can be described analytically because the basis 
amplitudes are known: �S(�: �) and �S(�: �′). Hence: 

�(�: �) = � QS(�)�SS
(�: �); 

�(�′: �) = � QS(�′)�SS
(�′: �). 

Eq. 25 

Summations over j run always from 1 to 2N. Let 
a(α) be the vector formed by the aj(α). Then  Q(�′) = �(�′, �)Q(�). Eq. 26 

The �(�′, �) transfers the set of coefficients aj from 
domain α to domain α’ . 

Now, the structure should be viewed by the next 
figure instead of Figure 3. 

 
Figure 4: a heterostructure where M, the middle domain, can be 

anything, simple or complex (5). 

The labels L and R have the same meaning and all 
included in the middle region M can be described by a 
simple ATM T. Thus, can be written 

�(�) = � ℚ(~: �)Q(~);  ��u � ≤ ���(�, ��)�(��);  ��u �� ≤ � ≤ �v  ℚ(5: �)Q(5);  ��u � ≥ �v
:. Eq. 27 

Since ψ is continuous at zl and zr: 

ℚ(5: �)Q(5) = �(�, ��); 
Q(5) = �(5, ~)Q(~), 

Eq. 28 

whence �(5, ~) = mℚ(5: �v)n' �(�, ��)ℚ(5: ��) Eq. 29 

which yields a expression for the CTM obtained from 
the T scheme. Where ℚ(�) = |� (�) ��(�) … ���(�)|, Eq. 30 

 

�(�, �+) =  ℚ(�)ℚ(�+)'  

= ����(�, �+) ���(�, �+)���(�, �+) ���(�, �+)� 
�(�+, �+) = � 

Eq. 31 

In this case A means amplitude and D derivative, 
and T comes from the ATM definition. 

Now, some K matrix characteristics may be listed, 
also as suggested by (5): 

• K depends on the basis; 
• If �+ < � < ��, then K has the chain property �(��, �+ ) = �(��, �  )�(� , �+ ) Eq. 32 
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• If L/R domain were choose as a basis, in the T 
scheme, which is canonical at zl/zr, then �(5, ~) = �(�v , ��). 

• The determinant of �(5, ~) depends on the 
differential system and on the basis employed. 

• If there is no M region, L and R match at 
zr=zl=z , then, �(�v , ��) = ��� and �(5, ~) = mℚ(5: �)n' ℚ(5: �), Eq. 33 

It is important to note that CTM relates domains, 
while the FTM and ATM relate local positions. 

To solve the problem of finding the confined 
energy levels in QW structures the CTM is employed.  

III. BOUND STATES CALCULATIONS USING 
TMM 

For a strained QW, the upper Hamiltonian 
described in equation Eq. 14 has the form (4) 

* = − qb1 + 2 + c 5�5�† 1 − 2 − ce + 	�(�)t, Eq. 34 

where should be defined 

	� = �2QR ?1 − f �f  B M  (�#��)
Δ�R   (kQuuI#u) :, Eq. 35 

and  c  being zero in the barriers regions, assuming the 
barrier much thicker than the well, so that the elastic 
strain exists only inside the well. To estimate the gap 
energy for the heterostructure, the Varshini’s equations 
were used with alloys parameters given in (6), and for 
the split between the conduction and the valence band 
was used the known rate of 65:35, respectively (6), for 
GaAs/AlGaAs interfaces. 

The solutions for the upper Hamiltonian can be 

obtained replacing kz by −I ��� and solving the effective 

mass equation (4) 

^* ^−I ii�a − �a �(�) = 0. Eq. 36 

To solve the lower Hamiltonian, the same 
procedure can be used. So, the final Hamiltonian 
expression can be described as 

* = −
.//
/0 ℏ�
2A+ (@ + 2@�)D�� + c 0

0 ℏ�
2A+ (@ + 2@�)D�� − c788

89 
 −	�(�). 

Eq. 37 

In this case, due to the strain, the heavy and light 
holes are decoupled. Solving the expression for each 
layer of the heterostructure, the wave function resulted 
can be written as �S(�) = "S#�$�%(�'�� )+ &S#'�$�%(�'��) Eq. 38 

For both heavy and light holes inside the interval C�S' , �SG  for zj-1 < z < zj , where j means the jth region. 
The parameters Aj and Bj are determined using the fact 

of that the functions � and 
��� !�� are continuous at the 

positions z=zj. 
Using these boundary conditions and the CTM, 

having Aj and Bj as the coefficients, the following 
expression can be proposed 

�"S� &S� � = �S� ,S �"S&S� Eq. 39 

where the matrix K can be obtained using the Eq. 26 in 
its evaluated form proposed by (5): 

�S� ,S
=  ΛS (T: ��)¢S� (T + 1: ��) ΛS(T: ��)¢S� (T + 1: ��)ΛS (T: ��)¢S� (T + 1: ��) ΛS(T: ��)¢S� (T + 1: ��)  Eq. 40 

where ¢S(�) is a scalar function and ΛS(�) is a vector 
function of z which was chosen to vary smoothly as 
possible. So, the function ΛS(T: ��) can brings the 
characteristics of the medium and the function ¢S� (T + 1: ��) is a propagation matrix. Using the 
vector function as suggest by (3) and (4), the equation 
Eq. 40 can be written as �S� ,S

= 12   C1 + �SG#�$�£¤��£¤ C1 − �SG#�$�£¤��£¤C1 − �SG#'�$�£¤��£¤ C1 + �SG#'�$�£¤��£¤  Eq. 41 

Where �S� = �S� − �S and �S = $���£¤$�£¤��. In the case of 

heavy holes, AS = ��(¥¤'�¥�), and for light holes, AS = ��(¥¤��¥�). At this point, it is important define kz: 

D�� = 1ℏ�2A+ (@ − 2@�) m� − c − 	�(�)n 
 

Eq. 42 

for heavy holes, and 

D�� = 1ℏ�2A+ (@ + 2@�) m� + c − 	�(�)n 
 

Eq. 43 

for light holes. 
According to TM theory, Eq. 39 represents a 

recursion relation between the coefficients Aj and Bj 
associated with adjacent intervals. The interaction 
gives raise an equation of the form 

�"�&�� = � �"+&+�, Eq. 44 

Where, � = ��,�' ��,�'� … � ,+. Knowing the 
behavior of a wave function from left to right, it is 
possible to deduce the coefficients A and B. 
Considering a heterostructure composed by only three 
layers (as a single square quantum well) and a wave 
function propagating from left to right, there should be 
an asymptotic growing in the first layer (left side) and 
an asymptotic decaying in the third layer (right side). 
Logically, the wave function doesn’t reach the infinite 
in the final of the first layer, neither reaches the zero 
value in the last layer. It goes to a real value imposed 
by the boundary conditions in the junction as described 
before. These behaviors impose A0=0 and Bn=1 for 
equation Eq. 38.  

Analyzing the K matrix, it can be divided in  
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� = ^A11 A12A21 A22a. Eq. 45 

So, for bound states, E<V, and according to Eq. 38, Eq. 
42 and Eq. 43, and the values assumed by A0 and Bn in 
Eq. 44, m22=0, such that the associated subband 
energies can be calculated by finding the zeroes of 
m22(E). 

For the conduction band, the procedure related can 
be repeated, replacing the heavy and light holes 
effective mass by the electron effective mass in each 
medium, making c == 0 and also replacing Ev for Ec 
where 

	¦ = �2f ?1 − f �f  B M  (�#��)
Δ�§  (kQuuI#u) :, Eq. 46 

where C1=2a/3. 

IV. NUMERICAL RESULTS FOR QW 
STRUCTURES 

To calculate the eigenenergies and the 
eigenfunctions it is necessary to divide the potential 
profile in slices to be used by the TMM. When the 
structure is formed by layers with constant potential, 
such as ideal square wells, only one slice is necessary 
to describe each layer. When an external electric field 
is applied it is necessary to evaluate how many slices 
should be employed to describe each semiconductor 
layer. Stronger field requires more slices to better 
describes the potential profile. It is also true for 
arbitrary potentials. The next figure shows the 
comparison between the original potential with an 
applied external bias and the modified potential profile 
used by the TMM. In each slice of the TMM, the 
potential is constant, indicating, as said before, for 
stronger electric fields more slices are necessary to 
simulate the original potential profile. 

 Figure 5: the potential profile with applied bias of 1 V divided by the 
TMM using slices with length of 50 Å in the barriers and 20 Å in the 

well. 

To calculate the bound states using the TMM, the 
energy  level must vary in the range of the barrier 
height. From the bottom of the well to the top of the 
well. For each value of energy, the TMM calculates the 
respective wave vector and other parameters for each 
slice inside each barrier and well layers, verifying if 
m22, from Eq. 45, reaches zero for both conduction 
and valence bands. In other words: it is necessary to 
calculate the wave vector to obtain the K matrix for 
each slice of each layer for each energy value, from the 
bottom to the top of the well, then multiply all 

matrices, and, finally, verify if m22 is zero or very 
close to it. If this is the case, the energy level is a bond 
state. 

To calculate the wave function is necessary the 
confined energy first guess calculated before. That is 
only a guess because there is no guarantee in varying 
the energy that way and to find the correctly bound 
state. The correct bound state is established when the 
wave function converges to zero in the final of the 
barrier for a specific potential profile. This is the 
boundary condition and it occurs in both bands. So it is 
necessary to build the wave function and confirm if its 
end converges or diverges. If diverges, the correct level 
is found using the bisection method until the 
convergence condition is established. The built wave 
functions in different structures and potentials profiles 
are showed from Figure 6 up to Figure 9. 

To conclude the procedure, it is necessary to 
calculate the potential due to charge distribution, 
solving the Poisson’s Equation and adding it to the 
potential due to band offset and applied electric field 
self consistently. 

To validate the estimation process, several different 
structures from literature were solved and the results 
are in good agreement. Figure 6 and Figure 7 show the 
conduction and valence bands (light holes) confined 
energy levels and their respective wave functions of a 
single step well from (7). The structure consists of two 
barriers of GaAs (300 Å), one layer of In0.1Ga0.9As (40 
Å) and one layer of In0.3Ga0.7As (40 Å), the last two 
compounding the well. The wave functions were 
rescaled for visual purposes. 

 
Figure 6: calculated confined energy levels and their respective wave 

functions of the asymmetric step well studied in (7) for 
conduction band. 

 
Figure 7: calculated confined energy levels and their respective wave 

functions of the asymmetric step well studied in (7) for light 
holes. 

In this case the error in estimating the confined 
energy levels is around 15% due to the uncertainties in 
the used Luttinger parameters and in the band gap 
estimation, both for InGaAs systems. It indicates the 
model dependence in these data. 
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Figure 8 and Figure 9 shows the conduction and the 
valence (light holes) confined energy levels and their 
respective wave function of a more complex 
configuration found in (8). The structure consists of 
three different-size coupled quantum wells of 
In0.1Ga0.9As (with length of 55 Å, 100 Å and 150 Å 
respectively) with barriers of Al0.34Ga0.66As (with 
length of 100 Å, 15 Å, 15 Å and 100 Å respectively). 

 
 
Figure 8: calculated confined energy levels and their respective wave 

functions of the tri-coupled quantum well studied in (8) for 
conduction band. 

 
Figure 9: calculated confined energy levels and their respective wave 

functions of the tri-coupled quantum well studied in (8) for 
light holes. 

In this case the error was reduced for less than 10%. 
The errors are, again, due to the uncertainty in the used 
parameters and models. 

These results show that the TMM may be used in 
complex structures. For practical devices the effects of 
the dopants must be considered. Thus, it is necessary to 
evaluate the charge distribution potential. 

The Hamiltonian including the effects of doping 
and the external applied field can be written as (2) 

* = ¨�2A+ + 	¦(�) − ©o� + 	ª(�) 
Eq. 47 

where 	¦(�) represents the band-offset potential, the 
second term represents the potential change caused by 
the applied field F, q is the electron charge and z is the 
position in the growth direction. 	ª(�) is the additional 
potential arising from the charge distribution, ρ, which 
can be obtained by solving  the Poisson’s equation 

2Vρ

ρ

ε

−
∇ =  Eq. 48 

where ε is the permittivity of the material. One way to 
determine its solution is to establish the electric field 
strength. The potential and the electric field are related 
by 

	ª(�) = − « � ∙ ��­
'­  Eq. 49 

As cited in (2), here, the one-dimensional characteristic 
of the band edge potential imposes the one dimension 
charge distribution. As the QW are assumed infinite in 
x-y plane, then any charge density ρ(z) can be imagined 
as an infinite plane, like a sheet, with areal charge 
density σ(z) and infinitesimal thickness δz (9). The 
electric field produced by such charged sheets is 
perpendicular to it and given by 

� = ®2M Eq. 50 

The total electric field strength due to many of these 
sheets or planes of charge is the total sum of the 
individual contribution, and is given by (9) 

�(�) = � ®(�¯)2M �I¢°(� − �¯),­
�±²'­

 Eq. 51 

where the function sign is defined as �I¢°(�) = +1, � ≥ 0; �I¢°(�) = −1, � < 0 
Eq. 52 

and is introduced to account on charge neutrality along 
the structure. 

For a doped semiconductor, there would be two 
contributions to the charge density σ(z), where the first 
would be the ionized impurities and the second the free 
charges carriers. Can be assumed that the former may 
be obtained from the doping density profile, d(z),  and 
the latter may be obtained from the probability 
distribution of the carriers in the heterostructure, (��∗(�)��(�)i�) (2). The net charge density in any of 
the planes as given by (2) 

®(�) = ©m³��∗(�)��(�) − �(�)ni�, Eq. 53 

where q is the charge on the extrinsic carriers. When 
more than one subband is populated, the contribution to 
the charge density must be summed over the relevant 
subbands, resulting in (9) 

®(�) = © ´� ³���∗(�)��(�) − �(�))
�² µ i�, Eq. 54 

where Ni represents the total number of electrons per 
unit area in each subband. Mathematically (2), 

� ³� = ³ = « ��i�
��� �

)
�² . Eq. 55 

Re-arranging all the parameters, the final expression of 	ª(�) is 

	ª(�) = 

« ¶ � bm∑ ³�(��∗(�)��(�)i�) − �(�)i�)�² n2M �I¢°(� − � ′)e­
� ′²'­

¸ ���
'­

 

Eq. 56 

where all the parameters are known, except the wave 
functions, but that are calculated by TMM. Here, δz is 
the increment used to define the growing axis. For the 
calculations procedure, since the dopping 
concentrations in practical devices are not to hogh and 
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normally the separation between the first excited state 
and the ground state in QWIPs are greater than 3�¹�, 
it is reasonable to assume that all carriers in the QW 
conduction band are in the ground state, resulting in 
Ni=N. Finally, can be said that to calculate the confined 
energy levels and their respective wave functions, the 
Schrodinger and Poisson equations are solved self-
consistently, the latter as a part of the self-consistent 
solution. 

To validate the estimation technique, some data 
from the literature were used, as well as measurements 
from actual devices. 

It is found in (2) a GaAs-based step well with 
barriers doped in the middle (modulation doped). The 
structure is comprised of two barriers with three layers 
of Al0.44Ga0.56As having length of 90, 95 and 90 Å, 
respectively. The middle layer is n-doped with 1.8*1017 
carriers/cm3. The well is formed by one layer of 
Al 0.18Ga0.82As and one layer of GaAs. The results are 
shown in Figures 10, 11, 12 and 3. 

 
Figure 10: self-consistent potential profile with normalized wave 

functions for the two lowest energy levels under 30 KV/cm electric 
field. The solid line is the potential profile with no charge 

distribution effects, the dotted line is the potential profile including 
the charge distribution, and the traced lines are the wavefunctions. 

 
Figure 11: areal charge density profile calculated in the self-

consistent procedure. 

 
Figure 12: electric field through the structure calculated in the self-

consistent procedure. 

 
Figure 13: charge distribution potential profile calculated in the self-

consistent procedure. 

These results show good agreement with (10). The 
error in estimating the confined energy levels are less 
than 10% for the calculated confined energy levels, but 
for the transition between E1-E2 is around 5%. 

Some results from the literature were selected in 
order to compare the estimation obtained by the TMM. 
Table I shows the comparison measurements reported 
in the literature and the TMM estimation, where HH, 
LH, and E represent the confined levels for heavy 
holes, light holes and conduction band, respectively, 
and λp represents the peak wavelength. The description 
of the structure are shown in Table 2. 

TABLE I: comparison between the literature data and the TMM 
results. 
Reference Ref. Result TMM result 
(11) Sample E  λp = 8.6 µm λp = 8.88 µm 

 
(12) Sample 1 HH1= 6.7 meV 

HH2=26.6 meV 
LH1=19.2 meV 

HH1= 7.1 meV 
HH2=28 meV 
LH1=19 meV 
 

(12) Sample 3 
  

HH1= 9.98 meV 
HH2=39.3 meV 
HH3=82.2 meV 
LH1=27 meV 
LH2=89.8 meV 
 

HH1= 10 meV 
HH2=40.9 meV 
HH3=83.9 meV 
LH1=26.1 meV 
LH2=87.3 meV 
 

(13) Sample A 
 

λp1 = 772 nm 
HH1-EC1 
 
λp2 = 760 Nm 
LH1-EC1  

λp1 = 763 nm 
HH1-EC1 
 
λp2 = 750 Nm 
LH1-EC1  

(14) Sample A λp1 = 30.6 µm 
HH1-LH1 
 
λp2 = 16.4 µm 
HH1-HH2 
 

λp1 = 41 µm 
HH1-LH1 
 
λp2 = 16.2 µm 
HH1-HH2 
 

(15) Sample A λp = 4.3 µm 
 

λp = 4.7 µm 
 

(15) Sample B λp = 9.4 µm 
 

λp = 9.2 µm 
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Table II: sample structures from the literature 
Reference / 
Sample 

Composition / 
Barrier Width 

Composition / 
Well Width 

Doping  

(11) Sample E  
 

Al0.26Ga0.74As 
500 Å 

GaAs 
50 Å 

n-type 
0.42.1018 cm-3 

(12) Sample 1 
 

Al0.21Ga0.79As 
300 Å 

GaAs 
100 Å 

no doping 

(12) Sample 3  
 

Al0.21Ga0.79As 
300 Å 

GaAs 
78 Å 

no doping 

(13) Sample A  
 

Al0.3Ga0.7As 
500 Å 

GaAs 
46 Å 

p-type 
5.1012 cm-3 

(14) Sample A  
 

Al0.3Ga0.7As 
300 Å 

GaAs 
40 Å 

p-type 
4.1018 cm- 

(15) Sample A 
 

Al0.38Ga0.62As 
300 Å 

GaAs 
5 Å 
 
In0.35Ga0.65As 
24 Å 

n-type 
2.5.1018 cm-3 
2 V bias 
 

(15) Sample B 
 

Al0.27Ga0.73As 
500 Å 

GaAs 
55 Å 

n-type 
0.7.1018 cm-3 
2 V bias 

The error between the estimation and the 
measurements is less than 5%. 

It is important to point out that all the simulated 
quantum wells are part of a superlattice. Since they are 
decoupled in the structure, they can be simulated 
separately.  

In the next case, this is used a structure of a real 
device extensively measured (2) (16). The entire 
structure is composed by three different QW stacks 
separated by contact layers, each one responsible to 
detect in a different band in infrared spectrum. Two of 
them are analyzed. The first one is responsible to detect 
the long infrared and it is formed by 20 repetitions of 
Al 0.26Ga0.74As (300 Å)/GaAs (52 Å)/ Al0.26Ga0.74As 
(300 Å) quantum wells where the GaAs well is 5x1017 
cm-3 Si doped (sample A). The second is responsible to 
detect the near infrared and is composed by 20 periods 
of undoped GaAs (300 Å)/In0.25Ga0.75As (40 
Å)/In0.10Ga0.90As (43 Å)/ GaAs (300 Å) step quantum 
wells (sample B). They were chosen because show the 
interband and intersubband transitions. 

Table III shows the comparison between the 
theoretical prediction for the peak wavelength absorbed 
and the prediction made by the TMM for the same 
parameter. Figure 14 and Figure 15 show the measured 
responsivity. All the measurements were done at 10 K. 

TABLE III: comparison between the theoretical predictions for 
peak wave length absorbed (16) and the TMM results. 
Reference Ref. Result TMM result 
Sample A 
n-type 
doped 
 

λpE1-E2 = 8.7 µm 
 
bias=1 V 

λpE1-E2 = 9.2 µm 
 
bias=1V 

Sample B 
n-type 
undoped 

λpHH1-E1 = 930 nm 
λpHH2-E1 = 895 nm 
λpHH1-E2 = 870 nm 
λpHH2-E2 = 840 nm 
 
λpLH1-E1 = 910 nm 
λpLH1-E2 = 852 nm 
 
bias= 1V 

λpHH1-E1 = 979 nm 
λpHH2-E1 = 930 nm 
λpHH1-E2 = 895 nm 
λpHH2-E2 = 854 nm 
 
λpLH1-E1 = 956 nm 
λpLH1-E2 = 875 nm 
 
bias= 1V 

 

 
Figure 14. Responsivity of the LWIR quantum well stack at 10 K, for 
a set of forward bias voltages. The theoretical intersubband transition 

is indicated by an arrow. 

 
Figure 15: Responsivity of the NIR quantum well stack at 10 K, for a 
set of forward bias voltages. The theoretical interband transitions are 

indicated by the arrows (16). 

As can be seen in the previous figures, there is a 
good agreement between the simulated peak 
wavelength and the measurements, mainly in the 
Figure 15, where the average error is less than 5% 
between the wavelength peaks measured and predicted. 
The difference between estimated results and 
measurements come from the parameters used in the 
calculation procedure and the uncertainty inserted in 
the Varshini’s equation used to estimate the 
semiconductors band gap. 

Finally, the results from TMM are compared to the 
results from the photoluminescence (PL) made in the 
sample B of the structure described in (17). The PL 
shows a peak at 0.94 microns for HH1-E1 transition, 
while the TMM gives 1.06 microns. That is an error 
around 10%. Again, the difference is behaving likely 
due to the uncertainties in the band offset parameters. 

These results show that the TMM is a suitable 
technique to calculate the bound states in complex 
structures, even in asymmetric structures with applied 
electric field. The results are very dependent from the 
alloy parameters. Therefore, it is absolutely necessary 
to work with reliable data. 
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V. FINAL CONSIDERATIONS 

An approach to calculate the bound states in both 
conduction and valence bands using an analytical 
solution to a 2x2 Hamiltonian for strained QW was 
presented. Also, the formalism of TMM to solve the 
Hamiltonians was presented. Numerical results for 
AlGaAs / GaAs / InGaAs QW with different molar 
concentration from the literature were found in good 
agreement with the used technique. 

The TMM approach was used to estimate the peak 
wavelength absorbed by transitions that occur in actual 
QWIPs. The comparison presented good agreement 
between the results and the average error was around 
6%. 

These results indicate that the TMM technique to 
find the eigenenergies and the eigenfunctions can be 
used in QWIP design. The error in some structures due 
to the alloy parameters uncertainties used to build the 
potential profile should be reduced  

These results indicate that is possible to refine the 
method and use it towards estimation of QWIP figure 
of merit that is an important step of QWIP design. 
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