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Abstract: This work presents a technique to calculate
bound states in both conduction and valence band in
complex quantum well structures. QW physics and the
Transfer Matrix (TM) formalism are discussed.
Analytical solutions to solve 2x2 Hamiltonians,vae|

as numerical results from TM are presented too. The
theoretical data are compared with results from the
literature and measurements from actual device. The
results show good agreement between all compared
data, indicating that TMM has a great potentiallie
used in QWIP design.
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[. INTRODUCTION

The design of photodetectors capable to detect
different bands simultaneously with high sensiivit
have found in quantum wells infrared photodetectors
good alternative. To be able to design such devites
is necessary to use theoretical approaches withgkno
accuracy to estimate the confined quantum wells YQW
energy levels and its respective wave functiong (th
eigenvalues and the eigenfunctions). Accuracy iy ve
important to allow the estimation of the wavelength
detected by a device using interband and intersubba
transitions

This work presents an approach to calculate the
quantum wells confined energy levels and its wave
functions in both valence and conduction bandsgusin
the Transfer Matrix Method (TMM). This is a versati
method in obtaining the transmission coefficietg t
energy states and the corresponding wave functbns
a QW structure with any potential profile. In this
technique, the structure can be divided in N slices
describing parts of the device, resulting in a iratr
multiplication describing the propagation of a man
wave across the whole multilayer structure.

The work starts with a description of the basics of
QW physics and the TMM formalism. After, the
analytical solution of the used Hamiltonian is
described. The numerical estimation and the
comparison with the literature data and measuresnent
are shown in the fourth part.

II. QUANTUM WELLS PHYSICS AND TMM

It is necessary discuss some basic aspects alwout th
physics of QW to understand how to find the cordine
energy levels and what Hamiltonians were used to

calculate them. Also, will be described the
mathematical tool used to solve the employed
Hamiltonians.

1. QW physics

Heterostructures for QW devices are constructed in
three forms: the single junction structures, often
referred as simple heterostructures, the doubletippm
structures, mostly referred as QW and multi-junctio
structures, called superlattices. These are show in
Figure 1. Electron states in the structures ar&uated
by assuming that the bulk and band structures remai
applicable for the constituents, even though the
physical dimension in one or more directions may be
comparable to the lattice constant. Electron sfatése
structure are obtained by solving the wave equdtion
the potential distributions in the structure byngsthe
bulk physical constants and by applying the known
effective-mass approximation and the suitable
boundary conditions (1).
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Figure 1: Heterostructures in QW. (A) single junnti(B) double
junction ; (C) multi-junction (superlattic¢}).

In QW, the potential profile is defined considering

the joining of the band off-set of each constitusdiay.
In this way, quantized energy levels are allowed
confined in the wells, while continuum states are
possible outside. Figure 2 shows a representation o
potential profile of a multiple quantum wells (MQW)

In the figure, the barriers and the wells are in
different colors highlighting their band gaps definby
Egs and Egw, respectively. CBO and VBO stand for
conduction and valence band off-sefg, and E, the
confined energy levelg is the growing axis an¥ is
energy axis as a function of
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In the effective mass the

Schrodinger equation reads:

approximation,

hZ Eq. 1
—V IV + VY = By,

where m is the effective mass awds the potential.
Here, the potential is due to three fonts: the micie
from the alloys band off-set, the potential dueato
external applied bias, necessary to operate
photoconductive photodetectors, and the potential d
to charge distribution. The total potential can be
described as:

Eq.2
= VEg + Vbias +Vp q

Vtotal

There are many ways to calculate the bandstructure
for semiconductors. This work will empléyp method
because this method provides an accurate desariptio
of the medium evaluated and it is simple to implémt
addition, using its simplest form is possible tedée
the conduction and valence band in same way (2). In
this case, if the-axis is chosen as the growth direction,
the wavefunction is separable into a latexay plane)
part y,, and a z pariy,. The lateral part is simply a

plane wave with kinetic enerdy; (E,). For thez part,
v, is a solution of

Eq.3

d r? d

o ¥@ +V(2) = E P(2),
such thatE = E; +E,. Taking into account that
m=m(z) for different barrier and well materials, the

operator% does not commute Witli—. Then Eqg. 3

requires y, and i% to be continuous at the

interfaces between different materials (3). In thask,
will be considered that there is no energy dispersi
the x-y plane, soE=0 (special case withk=k,=0).
Finally, the probability interpretation of the
wavefunction requires the normalization condition f
the bound states potential and the solution to3Htas
the mathematically form:

. . Eq.4

Y(z) = AetkzZ 4 Be~tkzZ,

The electronic wave functions that satisfy the
Schrodinger equation with a periodic lattice pdtgni
a bulk crystal are given by Bloch’s theorem:

¥(2) = e™"u (2).

The cell-periodic Bloch functions.{z) depend on the
band indexn and the envelope function wave veckor

Eq.5
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The wave functiong)(z) form a complete set of states
as do the wave functions based on Bloch functidns a
any other wave vector, including the wave vectdrs a
special points in the Brilloin Zondn treating the
optical and electronic properties of direct gap
semiconductors, it is natural to consider the zone-
center I-point Bloch functionsu,,,(z) for the used
wave function expansions. From now, the reference t
thek=0 index, was dropped for these functions.

2. Analytical Solution of the Hamiltonian

The total HamiltoniarH, for the valence band can
be written in two parts. The first part dependstioa
components of the wave vectds, (k, k). The second
part depends on strain componegits with a one-to-
one correspondence between terkids and ¢, and
their coefficients (4):

Ho=H + H,, Eq.6
where
Hy =
33
lE'E)
[Pe+Q =S¢ R, 0 1 31
I—ST P, —0Q, 0 R I'E‘E) Eq. 7
R0 R-Q s |31
0o R! -/ P2 2
|EJ_E)
and
P,=P+P,
Q=0+0Q, Eg. 8
R,=R+R,,
S, =S+S5..

The expressions for the above matrix elements are
— hyy ] 2 2 2
P= [(Zm) (k2 + k2 + k2),
— hy, ] 2 2 2
Q= [(Zm) (k2 + k2 — 2k2),
hYZ 2 2
G| V3 - k)
hy;
ifo . )] 2V3k,k,,

hys .
S= @] 2V3(k, — ik, )k,;

Eqg. 9

R=-

P.=-D, (sxx +éy, + ezz),
Dy
Qe = —(sxx +&, — 2522)
\/_(gxx +5yy) [ ] Exy»
== zxf_(sxz &)

Eq.10

The correspondence is

hy,

o hy, &
(2m)

(2m) i 3
h]/3 Du
H_l
(2m) 3
kikj & &j, L,j=x,9,2

_Dd = av,
Eq. 11

The basis functions are


Helcio
Rectangle


X Simpésio de Aplicagdes Operacionais em Areas de Defesa

e L@+t
D=-l+mn,

—i X+'Yl+EZT
Z+m b+ G121,

301 1 e 2izy
|§'—§)—\/—g|(X—lY) )+ §|Z )

N| W

12,2
22 Eq. 12

3 3 1 i L

|2, 2)_\/7|( iv) ).
To make the calculation procedure easier, it is
necessary to block-diagonalize the previous

Hamiltonian in a 2x2 matrices. So, it was used a
unitary transformation. The strain due to lattice
constant difference was also considered. After this
procedure, the Hamiltonian is re-written as (4):

_[HY 0 Eq.13
H_[o HLY
where
qu— _|PTe+< R
Rt P-Q—-¢
+ Dy (sxx +e&, + szz),
Eq. 14

HLZ_[P—Q—Z R ]
RY P+Q+¢
+Dd(sxx+£yy+szz)

with R = |R| —i|S]; P,Q,R, and S defined in Eq. 9.
For the strained-lattice case, the strain is glwen
ay + a(x)
gxx :gyy :a—(]:g'
e, = —2@5 Eq. 15
C11
Exy=Exz=E4,=0.

In the conduction band, the Hamiltonian is given by
+k2)

+ C1(5xx + ¢, + ezz),

2
H. =
€72

k2
G Eqg. 16

wherem,, is the electron effective mass andi€ the
deformation potential for the conduction band. Some
definitions are important:

=—Dy, a=C +a,
OE —2b [1 + ]
sh = [ Eq. 17
1
¢= E‘SEsh'

The reference [1] suggestion was considered and
C,=2a/3, and gra/3, were assumed.

Recalling the Hamiltonian in the valence band,
since the hydrostatic stress compor@pfe,, + Eyy +
&,z) only introduces a shift in the valence band, this
term will be ignored temporally. It is important $tate
that the hole energyf is taken to be positive
downward:E = —E. The solutions for the eigenvalues
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and corresponding eigenvectors of the

Hamiltonian are the following (4):

upper

1.For the Heavy hole
_ .1
E=P—[(Q+{?*+RRz

[Faen] [ Q@+ +[Q+0%+ ﬁﬁ*ﬁ]
ZHH

_gt Eqg. 18

[P Q+9) - E
—Rt

2.For the Light hole
E=P+[(Q+{*+RRz

[Fun] -
FZLH

NiR

R
Q@+ +[@+ O +RRT]?
R

Eq. 19

[E—P—(Q+z)]'

There are other alternatives forms and solutions fo
both, upper and lower Hamiltonians, agjdcan be
positive, if the strain is a compression, or pusitiif
the strain is a tension.

The wave functions can be written as (before
normalization) (4)

Yuu(r) = F1HHeik'r|1> + FzHHeik'r|2>,

Eq. 20
Y () = [ 1HH] etkr
2HH
for heavy hole, and
Yru(r) = F1LHelk'r|1> + FZLHeLk'r|2>'
Eqg. 21

Yy () = [ 1LZ] etkr

for light hole. Similar expressions hold for sobuts
using the other two base®) |and 4) from the lower
Hamiltonian.

As cited in (4): The classification of heavy hote i
mainly from the fact that &=0, the wave function has
only a component along the basls for the upper
Hamiltonian and4)) for the lower. These bases are
linear combinations of3)/2,+3/2) basis functions.
The other bases have a similar behave. Since the
general valence-band structure of a strained semi-
conductor is distorted due to the effects of ssaihis
natural to classify the heavy- and light-hole babgs
their basis functions &=0. In this way, atk.k,=0,
E=-{ <0 (HH), andE=+ ¢ > 0 (LH); along thek,
direction, it is obtained for both compression and
tension,

2

h
E= _Z_(Vl _Zyz)kg - { (HH),
m Eq. 22

h
E= —%(h +2y,)kZ + { (LH).

3. The Transfer Matrix Method
The next figure illustrates a heterostructure \ilité
notation used in the work. THe and R domains are
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often though not necessarily always semi-infinite,

while the inner domains are finitengl,...,n). The F(a:z) =za-(a)IF-(0!!Z);
entire middle region will be labeled M (fromto z). - e Eq. 25
Li1l2]s] | m m#1 | nd|n| R F(a"2) zzaf(a’)ﬂ:j (a":2).

J

Summations over j run always from 1 to 2N. Let
a(a) be the vector formed by tlaga). Then

Figure 3: the heterostructure using the notationetaised in the a((x ) = K(a ’ a)a(a). Fa.2¢
TMM (5).
TheK (a', a) transfers the set of coefficiergsfrom
To calculate the eigenenergies and the eigenvalues domaina to domaino’.
for a heterostructure as showed above, it is nacess Now, the structure should be viewed by the next
correlate the different domains using the imposed figure instead of Figure 3.
boundary conditions. The TM is a method to coreelat
different domains following the imposed boundary

conditions to match the solutions. L M R
General Definitions

The Transfer Matrix (TM) can be obtained by some z z,
numerical procedure equivalent to a numerical

. . . . . . Figure 4: a heterostructure where M, the middle alopcan be
integration. The implementation admits differentis anything, simple or complex (5).

and thus different objects are defined in the ditierre
and the term TM is used to denote these different The labels L and R have the same meaning and all

objects. To denote these effects and the necessity included in the middle region M can be describedaby

represent the medium described, the symdois simple ATM T. Thus, can be written

introduced as a domain symbol, which corresponds to

L or R for barriers and M for the well (5). Q(L:z)a(L); forz <z Eq. 27
By the previous assumption, is considered as a W(z) =Tz, z)P(z); forz; <z <z, .

domain of a certain material afida: z) is described as Q(R:z)a(R); for z = z,

being a solution of the differential system desogb
the corresponding medium. The notation (a: z)
denotes any pointz in the medium. Now, three

Sincey is continuous at,and z

different objects can be defined, following the Q(R:2)a(R) = T(z,z); Eq. 28
classification suggested by (5): a(R) = K(R, L)a(L),
Full Transfer Matrix (FTM) denotedM(a: z, z,). whence
This transfers amplitudes and derivatives from zto B Eq.29
K(RPL) = [Q(R Z‘r)] 1T(Z' ZI)Q(R: Zl) N
P2 _ i z,2,) |F & %) Eq. 23 o _ _
F'(a:z)| — T2 F (e zp)| which yields a expression for the CTM obtained from

the T scheme. Where

whereF is an N-vector, and M is an 2Nx2N matrix. Q@) = [,(2) ¥,(2) . Yo (D), Eq.3C
Associated Transfer Matrix (ATM) denoted
T(a:z, zy,). This transfers the amplitudEé and the
linear differential formA. Thus: T(z,2,) = Q(2)Q(z,)™"
dF(2) _ Tya(z,20) Typ(z,20) Eq.31
A(z) = B(Z)? + P(2)F(2) Tpa(2,20) Tpp(2 2o)
Eq. 24
g'(a:z) — T(a:2,20) ]F,(a:zo) T(zg,20) =1
(a:2) A'(a: zy) . . o
In this case A means amplitude and D derivative,
A(a:z) = P(a:z)F(a:z) + B(a: z2)F'(a: z) andT comes from the ATM definition.
Now, some K matrix characteristics may be listed,
Coefficient Transfer Matrix (CTM) denoted also as suggested by (5):
K(a',a). Note that this refers to a substantially e K depends on the basis;
different situation. In this case two different dans o If z, < z; < z,, then K has the chain property

are related. And now, the mediacan be assumed,
while o' can be described analytically because the basis
amplitudes are knowr; (a: z) andF; (a: z"). Hence:

Eq.32
T(2y,20 ) = T(23,2, )T (21,20 ) g
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e If L/R domain were choose as a basis, inthe T
scheme, which is canonical a/z, then
K(R,L) =T(z,, 7).

e The determinant oK (R,L) depends on the
differential system and on the basis employed.

e If there is no M region, L and R match at
z=z=z ,thenT(z.,z) = I, and

_  A-10(R- Eq.32

K(R,L) = [Q(R:2)] ' Q(R: 2),

It is important to note that CTM relates domains,
while the FTM and ATM relate local positions.

To solve the problem of finding the confined
energy levels in QW structures the CTM is employed.

[Il. BOUND STATES CALCULATIONS USING
TMM

For a strained QW, the upper Hamiltonian
described in equation Efi4 has the form (4)

P+Q+ R
o |[Prere N VS(Z)]’ Eq. 34
R P-Q-¢
where should be defined
C12
- {Za,, [1 ) Eq. 35

AE, (barrier)

and ¢ being zero in the barriers regions, assuming the
barrier much thicker than the well, so that thestita
strain exists only inside the well. To estimate tfap
energy for the heterostructure, the Varshini’'s éigna
were used with alloys parameters given in (6), fand
the split between the conduction and the valenoel ba
was used the known rate of 65:35, respectivelyf(s),
GaAs/AlGaAs interfaces.

The solutions for the upper Hamiltonian can be

obtained replacing oy —i% and solving the effective
mass equation (4)

.5 Eq.3€
[H [—15] —E]l[}(z) =0. q

To solve the lower Hamiltonian, the same
procedure can be used. So, the final Hamiltonian
expression can be described as

hZ
|r2— (i + 27k +¢ 0 -I
| 2 | Eq. 37
h .

O +2y2)kf — ZJ

H=-—
0

2m,

—(@.

In this case, due to the strain, the heavy and ligh
holes are decoupled. Solving the expression foh eac
layer of the heterostructure, the wave functionltes
can be written as

l[lj(Z) — Ajeika(z—zj)+ Bje—ika(z—zj) Eq 38
For both heavy and light holes inside the interval
(zj-1,2;) for z, <z <z, where j means the jth region.
The parameterd; andB; are determined using the fact
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of that the functiongy andimi are continuous at the
0

positionsz=z.

Using these boundary conditions and the CTM,
having A; and B; as the coefficients, the following
expression can be proposed

Ajr) _ 4;

(Bj+1) h Kj+1’j (Bj)
where the matriX can be obtained using the Eq. 26 in
its evaluated form proposed by (5):

Eqg. 39

LY
Aj(jzzs)gj+1(j + 1:7,) Aj(jzzs)gj+1(j +1:2)
Aj(jzzs)gj+1(j + 1:7,) Aj(jzzs)gj+1(j +1:2z)

Eqg. 40

whereg;(z) is a scalar function and;(z) is a vector
function of z which was chosen to vary smoothly as
possible. So, the functiom;(j:z;) can brings the
characteristics of the medium and the function
gj+1( +1:z,) is a propagation matrix. Using the
vector function as suggest by (3) and (4), the &ogua
Eg. 40 can be written as

Kj1,j

1| (14 aj)etintinn (1 - a;)etkintin
T 2|(1 - ay)ekimlin (14 a)e il

Eq. 41

kjmjiq

Wherel;,; = zj,; — z; anda; = . In the case of
j+1my
| =2 nd for light hol
heavy holes, m; G & d for light holes,

mo

m;, = At this point, it is important define k

T (at2y)’
1
ki = —5————I[E - {—Vi(2)]
Z  h? s Eq. 42
Z—mO(yl —2y,) q
for heavy holes, and
k; = [E+( - VS(Z)] Eq. 43

K2
Z—mO (y1 +2v2)

for light holes.

According to TM theory, Eq. 39 represents a
recursion relation between the coefficier{sand B;
associated with adjacent intervals. The interaction
gives raise an equation of the form

Ay _ (Ao
(52) = (&)
Where, K =Kyy_1Kyn—z.-Kip. Knowing the
behavior of a wave function from left to right, ig
possible to deduce the coefficientd and B.
Considering a heterostructure composed by onlyethre
layers (as a single square quantum well) and a wave
function propagating from left to right, there shibbe
an asymptotic growing in the first layer (left sidend
an asymptotic decaying in the third layer (righdesi
Logically, the wave function doesn’t reach theriité
in the final of the first layer, neither reacheg trero
value in the last layer. It goes to a real valupdsed
by the boundary conditions in the junction as desc
before. These behaviors impofg=0 and B,=1 for
equation Eq38.
Analyzing the K matrix, it can be divided in

Eq.44
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mll mil2
m21 m22F

So, for bound states, E<V, and according to EqQESg,

42 and Eq. 43, and the values assumefg ndB, in

Eq. 44 m22=0Q such that the associated subband
energies can be calculated by finding the zeroes of
m22(E).

For the conduction band, the procedure related can
be repeated, replacing the heavy and light holes
effective mass by the electron effective mass ithea
medium, making == 0 and also replacingv for Ec
where

k=] Eq.45

2C [1—@12 (well) Eq. 46
Ve = ! Ci1 , 9
AE, (barrier)
whereC,=2a/3.
IV. NUMERICAL RESULTS FOR QW
STRUCTURES
To calculate the eigenenergies and the

eigenfunctions it is necessary to divide the pdaént
profile in slices to be used by the TMM. When the
structure is formed by layers with constant potdnti
such as ideal square wells, only one slice is acgs
to describe each layer. When an external eledgld f
is applied it is necessary to evaluate how margesli
should be employed to describe each semiconductor
layer. Stronger field requires more slices to bette
describes the potential profile. It is also true fo
arbitrary potentials. The next figure shows the
comparison between the original potential with an
applied external bias and the modified potentiafila
used by the TMM. In each slice of the TMM, the
potential is constant, indicating, as said befdie,
stronger electric fields more slices are necessary
simulate the original potential profile.

1

o
@

| ORIGINAL POTENTIAL PROFILE
| e TMM POTENTIAL PROFILE

et
)}

o
i

o

......

ENERGY (meV)
- o
%)

o
L]

04 2 3 4 5 6

GROWING AXIS (ANGSTRONS) x10*

Figure 5: the potential profile with applied biafsl V divided by the

TMM using slices with length of 50 A in the barseand 20 A in the
well.

To calculate the bound states using the TMM, the
energy level must vary in the range of the barrier
height. From the bottom of the well to the top loét
well. For each value of energy, the TMM calculates
respective wave vector and other parameters fdn eac
slice inside each barrier and well layers, veridyiri
m22, from Eq. 45, reaches zero for both conduction
and valence bands. In other words: it is heceskary
calculate the wave vector to obtain tkematrix for
each slice of each layer for each energy value; fitte
bottom to the top of the well, then multiply all
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matrices, and, finally, verify if m22 is zero orrye
close to it. If this is the case, the energy lésel bond
state.

To calculate the wave function is necessary the
confined energy first guess calculated before. Tivat
only a guess because there is no guarantee inngaryi
the energy that way and to find the correctly bound
state. The correct bound state is established wlen
wave function converges to zero in the final of the
barrier for a specific potential profile. This itet
boundary condition and it occurs in both bandsit 8o
necessary to build the wave function and confirritsif
end converges or diverges. If diverges, the cotexel
is found using the bisection method until the
convergence condition is established. The builtevav
functions in different structures and potentialsfifes
are showed from Figure 6 up to Figure 9.

To conclude the procedure, it is necessary to
calculate the potential due to charge distribution,
solving the Poisson’s Equation and adding it to the
potential due to band offset and applied elecietd f
self consistently.

To validate the estimation process, several differe
structures from literature were solved and the Itgsu
are in good agreement. Figure 6 and Figure 7 shew t
conduction and valence bands (light holes) confined
energy levels and their respective wave functidna o
single step well from (7). The structure consigtsnm
barriers of GaAs (300 A), one layer of iGasAs (40
A) and one layer of kxGayAs (40 A), the last two
compounding the well. The wave functions were
rescaled for visual purposes.

0.35-

o
w

o
)
b

0.15F

=
o
H

ENERGY (meV)

0.05-
o-

-0,050

2 5 4 5 6
GROWING AXIS (ANGSTRONS) o

Figure 6: calculated confined energy levels ant tlespective wave
functions of the asymmetric step well studieq7pfor
conduction band.

o
o
S =)

&
=

ENERGY (meV)
L

g
&)
3.1

0 2 3 4 5 ]
GROWING AXIS (ANGSTRONS) x10°

Figure 7: calculated confined energy levels ant tlespective wave
functions of the asymmetric step well studied7pfor light
holes.

In this case the error in estimating the confined
energy levels is around 15% due to the uncertairirie
the used Luttinger parameters and in the band gap
estimation, both for InGaAs systems. It indicates t
model dependence in these data.
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Figure 8 and Figure 9 shows the conduction and the

valence (light holes) confined energy levels angirth
respective wave function of a more complex
configuration found in (8). The structure consisfs
three different-size coupled quantum wells of
Ing1GayeAs (with length of 55 A, 100 A and 150 A
respectively) with barriers of AbGaeAs (with
length of 100 A, 15 A, 15 A and 100 A respectively)

ENERGY (eV)

Figure 8: calculated confined energy levels an ttespective wave
functions of the tri-coupled quantum well studied8) for
conduction band.

ENERGY (eV)

1GROWIN2C% AXIS (AﬁJGSTROI\?S) ; o®

Figure 9: calculated confined energy levels and ttespective wave
functions of the tri-coupled quantum well studied8) for

light holes.

In this case the error was reduced for less thé&. 10
The errors are, again, due to the uncertaintyénutied
parameters and models.

These results show that the TMM may be used in
complex structures. For practical devices the &ffe€
the dopants must be considered. Thus, it is negessa
evaluate the charge distribution potential.

The Hamiltonian including the effects of doping
and the external applied field can be written as (2

2
H= [4 Eq. 47
2m
where V,(z) represents the band-offset potential, the
second term represents the potential change cédaysed
the applied field-, q is the electron charge aads the
position in the growth directior, (z) is the additional
potential arising from the charge distributign,which
can be obtained by solving the Poisson’s equation

Eq. 48

+V,(2) —qFz+V,(2)

0

-p
pr = 7
whereg is the permittivity of the material. One way to
determine its solution is to establish the eledlietd
strength. The potential and the electric field ralated

by

V,,(z)=—f E-dz Eq. 49
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As cited in (2), here, the one-dimensional charatte

of the band edge potential imposes the one dimensio
charge distribution. As the QW are assumed infimte
x-y plane, then any charge dengifg) can be imagined
as an infinite plane, like aheet with areal charge
density 6(z) and infinitesimal thicknesgz (9). The
electric field produced by suckharged sheetss
perpendicular to it and given by

_ o
 2¢
The total electric field strength due to many oégh

sheets or planes of charge is the total sum of the
individual contribution, and is given by (9)

[oe]

Eq.5C

o(z'
E(z) = Z ( )sign(z —z'), Eg. 51
: 2¢
z'=—00
where the function sign is defined as
sign(z) = +1,z = 0; Eq. 52

sign(z) = —1,z<0

and is introduced to account on charge neutraldyg
the structure.

For a doped semiconductor, there would be two
contributions to the charge densitfz), where the first
would be the ionized impurities and the seconditbe
charges carriers. Can be assumed that the formgr ma
be obtained from the doping density profitéz) and
the latter may be obtained from the probability
distribution of the carriers in the heterostructure
Wi (@Y;(2)62) (2). The net charge density in any of
the planes as given by (2)

a(z) = q[Ny; (2);(2) — d(2)]6z, Eq.52

where ¢ is the charge on the extrinsic carriersefVh
more than one subband is populated, the contribtio

the charge density must be summed over the relevant
subbands, resulting in (9)

o) =1q (Z Newi (2(2) - d(z)) 6z, B4

whereN; represents the total number of electrons per
unit area in each subband. Mathematically (2),

N;=N = f dz6z. Eq. 55

all z

n
i=1
Re-arranging all the parameters, the final expoesef
V,(2)is

|/

(2)

X, N W; (2)9:(2)62) — d(2)6z]
2¢e

J1Z|

sign(z — z')]} dz
Eg. 56

where all the parameters are known, except the wave
functions, but that are calculated by TMM. Heie,is

the increment used to define the growing axis. ther
calculations  procedure, since the  dopping
concentrations in practical devices are not to hagh


Helcio
Rectangle


X Simpésio de Aplicagdes Operacionais em Areas de Defesa

normally the separation between the first excitiedes
and the ground state in QWIPs are greater BigT,

it is reasonable to assume that all carriers inQh¢
conduction band are in the ground state, resuiting
Ni=N. Finally, can be said that to calculate the cadin
energy levels and their respective wave functiting,
Schrodinger and Poisson equations are solved self-
consistently, the latter as a part of the self-istast
solution.

To validate the estimation technique, some data
from the literature were used, as well as measursme
from actual devices.

It is found in (2) a GaAs-based step well with
barriers doped in the middle (modulation doped)e Th
structure is comprised of two barriers with thragekrs
of Alg4GasAs having length of 90, 95 and 90 A,
respectively. The middle layer is n-doped with 18*
carriers/cm. The well is formed by one layer of
Alg16GaygAs and one layer of GaAs. The results are
shown in Figures 10, 11, 12 and 3.

0.5
ORIGINALPOTENTIAL PROFILE
rverser- MODIFIED POTENTIAL PROFILE
___ WAVEFUNCTIONS
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05 2 3 4 5 6 7
GROWING AXIS (ANGSTRONS) x10°
Figure 10: self-consistent potential profile witbrmalized wave
functions for the two lowest energy levels undeik30cm electric
field. The solid line is the potential profile witto charge
distribution effects, the dotted line is the potainprofile including
the charge distribution, and the traced lines laeenavefunctions.
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Figure 11: areal charge density profile calculatethe self-
consistent procedure.
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Figure 12: electric field through the structureccédted in the self-
consistent procedure.
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Figure 13: charge distribution potential profiléatdated in the self-
consistent procedure.

These results show good agreement with (10). The
error in estimating the confined energy levels lass
than 10% for the calculated confined energy levals,
for the transition between E1-E2 is around 5%.

Some results from the literature were selected in
order to compare the estimation obtained by the TMM
Table | shows the comparison measurements reported
in the literature and the TMM estimation, where HH,
LH, and E represent the confined levels for heavy
holes, light holes and conduction band, respegtivel
andA, represents the peak wavelength. The description
of the structure are shown in Table 2.

TABLE I: comparison between the literature data andthe TMM
results.

Reference Ref. Result TMM result
(11)Sample E A,=8.6um Ap=8.88um
(12) sample 1 HH1= 6.7 meV HH1=7.1 meV
HH2=26.6 meV HH2=28 meV
LH1=19.2 meV LH1=19 meV
(12) sample 3 HH1=9.98 meV HH1=10 meV
HH2=39.3 meV HH2=40.9 meV
HH3=82.2 meV HH3=83.9 meV
LH1=27 meV LH1=26.1 meV
LH2=89.8 meV LH2=87.3 meV
(13)Sample A Au=772 nm Ap1= 763 nm
HH1-EC1 HH1-EC1
hp2= 760 Nm hp2= 750 Nm
LH1-EC1 LH1-EC1
(14)Sample A Ay =30.6pm Ap1=41pm
HH1-LH1 HH1-LH1
Ap2=16.4um Ap2=16.2um
HH1-HH2 HH1-HH2
(15)Sample A A,=4.3um Ap=4.7um
(15)SampleB A,=9.4um Ap=9.2um
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Table II: sample structures from the literature

Reference / Composition/ Composition/ Doping
Sample Barrier Width ~ Well Width
(11)Sample E  AlgGan7/As  GaAs n-type
500 A 50 A 0.42.16% cm®
(12)Sample 1 Alg21Ga7As  GaAs .
300 A 100 A no doping
(12)Sample 3 Alg21Gan7As  GaAs .
300 A 78 A no doping
(13)Sample A Alg3sGay7As GaAs p-type
500 A 46 A 5.10% cm®
(14)Sample A Alg3sGay7As GaAs p-type
300 A 40 A 4.10%cm
GaAs
5 A n-type8 .
(15)Sample A AlgsdGa s 2.5.10%cm
300 A 2V bias
INg 3:G & 65AS
24 A
(15)Sample B Al»GaAs  GaAs ntype
0.7.16%cm
500 A 55 A X
2V bias
The error between the estimation and the

measurements is less than 5%.

It is important to point out that all the simulated
guantum wells are part of a superlattice. Since they are
decoupled in the structure, they can be simulated
separately.

In the next case, this is used a structure of a real
device extensively measured (2) (16). The entire
structure is composed by three different QW stacks
separated by contact layers, each one responsible to
detect in a different band in infrared spectrum. Two of
them are analyzed. The first one is responsible to detect
the long infrared and it is formed by 20 repetitions of
AlooGarzAs (300 A)/GaAs (52 A) Al2GazAs
(300 A) quantum wells where the GaAs well is 5¥10
cm® Si doped (sample A). The second is responsible to
detect the near infrared and is composed by 20 periods
of undoped GaAs (300 AnGasAs (40
A)Ing1GasAs (43 A)/ GaAs (300 A) step quantum
wells (sample B). They were chosen because show the
interband and intersubband transitions.

Table 1l shows the comparison between the
theoretical prediction for the peak wavelength absorbed
and the prediction made by the TMM for the same
parameter. Figure 14 and Figure 15 show the measured
responsivity. All the measurements were done at 10 K.

TABLE lll: comparison between the theoretical predictions for
peak wave length absorbed (16) and the TMM results.

Reference Ref. Result TMM result
Sample A )LpEl—EZ: 87},Lm )LpEl—EZ: 92},Lm
n-type

doped bias=1V bias=1V

Sample B )LpHHl—Elz 930 nm )LpHHl—Elz 979 nm
n-type )LpHHZ—Elz 895 nm )LpHHZ—Elz 930 nm
undoped )LpHHl—EZ: 870 nm )LpHHl—EZ: 895 nm

)LpHHz,Ez =840 nm )LpHHz,Ez =854 nm

)LpLHl,El =910 nm
)LpLHl,Ez =852 nm

)LpLHl,El =956 nm
)LpLHl,Ez =875 nm

bias= 1V bias= 1V
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Figure 14. Responsivity of the LWIR quantum well stack at 10 K, for
a set of forward bias voltages. The theoretical intersubband transition
is indicated by an arrow.
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Figure 15: Responsivity of the NIR quantum well stack at 10 K, for a
set of forward bias voltages. The theoretical interband transitions are
indicated by the arrowd6).

As can be seen in the previous figures, there is a
good agreement between the simulated peak
wavelength and the measurements, mainly in the
Figure 15, where the average error is less than 5%
between the wavelength peaks measured and predicted.
The difference between estimated results and
measurements come from the parameters used in the
calculation procedure and the uncertainty inserted in
the Varshini's equation used to estimate the
semiconductors band gap.

Finally, the results from TMM are compared to the
results from the photoluminescence (PL) made in the
sample B of the structure described in (17). The PL
shows a peak at 0.94 microns for HH1-E1 transition,
while the TMM gives 1.06 microns. That is an error
around 10%. Again, the difference is behaving likely
due to the uncertainties in the band offset parameters.

These results show that the TMM is a suitable
technique to calculate the bound states in complex
structures, even in asymmetric structures with applied
electric field. The results are very dependent from the
alloy parameters. Therefore, it is absolutely necessary
to work with reliable data.
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V. FINAL CONSIDERATIONS

An approach to calculate the bound states in both
conduction and valence bands using an analytical
solution to a 2x2 Hamiltonian for strained QW was
presented. Also, the formalism of TMM to solve the
Hamiltonians was presented. Numerical results for
AlGaAs / GaAs / InGaAs QW with different molar
concentration from the literature were found in good
agreement with the used technique.

The TMM approach was used to estimate the peak
wavelength absorbed by transitions that occur in actual
QWIPs. The comparison presented good agreement
between the results and the average error was around
6%.

These results indicate that the TMM technique to
find the eigenenergies and the eigenfunctions can be
used in QWIP design. The error in some structures due
to the alloy parameters uncertainties used to build the
potential profile should be reduced

These results indicate that is possible to refine the
method and use it towards estimation of QWIP figure
of merit that is an important step of QWIP design.
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