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Abstract—In  both  reception,  such  as  direction  finding,  and 
transmission, such as synthesis far field patterns, parsimonious 
representation  of  beam former  has  numerous  advantages  that 
compensates  its  heavier  computing  load.  On  one  hand,  in 
transmission,  the  synthesis  problem  is  an  optimization  that 
guaranties to find not only the best pattern, but also minimizes 
the  number of  necessary sources that  achieves the  desired far 
field pattern. On the over hand, with the reception problem, the 
parsimonious  representation  of  beam  formers  results  in  an 
algorithm independent of the array geometry,  that can handle 
both coherent and incoherent signals,  and doesn't  rely on any 
prior assumption on spatial stationarity. It uses global matching 
filtering in a way that its performances are close to the Cramer-
Rao bounds, and most of the time better than MUSIC.
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I.  INTRODUCTION 

Due  to  its  many  applications  in  electronic  warfare 
communications and signal processing, array pattern synthesis 
has been extensively investigated over the last several decades 
[1]-[7]. It consists of determining the array excitation that leads 
to a specified radiation pattern.

The  synthesis  of  narrow  beam  and  low  sidelobes  is  a 
frequently encountered problem that has first been solved by 
Dolph [8] for uniformly spaced linear  arrays.  He obtained a 
closed  form  that  optimizes  the  compromise  between 
beamwidth and sidelobe level.

Since  then,  numerous  papers  have  been  proposed  to 
generalize and extend Dolph’s work to deal with any sidelobe 
envelope and arbitrary arrays.  An arbitrary array can have a 
non  linear  shape  and  may  be  composed  of  non  uniformly 
spaced  or  non  isotropic  or  even  non  identical  elements. 
Analytical  solutions  are  of  course  not  available  for  such 
problems.

Many  numerical  synthesis  methods  have  thus  been 
proposed. Drawing up an exhaustive list would be impossible 
but one may distinguish two main classes. Many methods are 
indeed iterative and based on weighted least square algorithms 
[9]–[12].  A  good  review  can  be  found  in  [13].  Another 
important  class of pattern synthesis methods are  inspired on 
adaptive array algorithms [14]–[18] that adjust their patterns so 
as to maximize the signal to noise ratio while rejecting a set of 
prespecified interferers. 

In both classes, an ad hoc iterative scheme is implemented 
that, at each step, computes the difference between the desired 
pattern  and  the  currently  obtained  pattern  and  adjust  the 
weights in the least square criterion or the angles and powers of 
the interferers in the adaptive array schemes before computing 
the  new  ”optimal”  pattern.  Moreover,  quite  often  in  these 
schemes the phase of the optimal pattern needs to be defined 
and  clever  phase  adaptation  means  are  designed  to  avoid  a 
wrong choice of phase that precludes optimal performance.

This  recursive  feedback  scheme  is  in  general  fully 
automatized  and  requires  no  outside  intervention.  This 
procedure  is  iterated  until  a  suitable  pattern  is  obtained. 
According to the authors convergence generally occurs after a 
few steps.

As rightly pointed out in [19], [20], if the synthesis problem 
is not convex, there is no guarantee that the absolute optimum 
is reached and indeed the problems, as they are considered in 
most of these papers, are not convex.

Moreover while for regular arrays with isotropic sensors, 
optimal methods, such as Dolph’s technique tell us what the 
achievable  performance  is,  for  arbitrary  arrays  no  such 
guidelines  pre-exist.  It  is  then  difficult  to  both  set  a  priori 
reasonable  constraints  and  draw  a  definite  conclusion, 
regarding  the  achievable  performance  of  these  arrays  using 
these algorithms.

Except for [19], [20], where interior point methods are used 
to  constraint  the  beam pattern  level  of  linear,  adaptive  and 
broadband  arrays,  very  few  papers  have  investigated  the 
potentialities  of  convex  optimization  in  antenna  pattern 
synthesis problems. 

In  the  case  of  direction  of  arrival  problems,  correlation 
between waveforms generally appears in the case of multipath 
propagation and can severely degrade the performance of an 
antenna  array  system.  Most  source  localization  techniques, 
including those that are eigen structure-based such as MUSIC 
[21,  22],  encounter  difficulties  only  when  the  signals  are 
perfectly  correlated  or  coherent.  But  in  practice,  however, 
significant  degradations  arise  when  the  signals  are  highly 
correlated. 

Though of high practical importance, the highly correlated 
or  the  fully  correlated  (coherent)  case  did  not  receive  the 
attention  it  deserves  [23]  and  in  general  only  some 
preprocessing schemes whose aim is to deccorelate the signals 



are  proposed  to  improve  the  performance  or  reduce  the 
degradations  of  techniques  that  are  build  and  developed  for 
uncorrelated  sources.  A  preprocessing  technique  known  as 
spatial  smoothing  has  been  proposed  in  [24]  and  further 
investigated in [25, 26]. The main drawback of this approach, 
besides being only applicable to regular array geometries, is the 
reduction  of  the  effective  array  aperture  and  hence  lower 
resolution  and  accuracy.  Another  technique  known  as 
redundancy averaging [27, 28] is known to induce bias in the 
bearing estimates.

In the sequel we consider a technique that works for any 
geometry  and  that  is  able  to  handle  correlated  as  well  as 
coherent waveforms. It simply relies on no prior assumption.

In  this  paper,  we  present  first  the  parsimonious 
representation of beam formers, then its application to pattern 
synthesis and to direction of arrival analysis.

II. PARSIMONIOUS REPRESENTATION

The  parsimonious  representations  are  especially  used  to 
find a parsimonious representation of a signal  (mono, bi- or 
three-dimensional,  1D,  2D or  3D)  aiming a  compression  of 
information,  for  example.  The  idea  is  simple,  instead  of 
representing in a strict sense the signal in a base (orthogonal or 
not)  and  if  required  canceling  the  small  coefficients  to 
compress  information,  one  proposes  to  represent  it  in  a 
redundant base containing a number of vectors (components, 
atoms) much higher than the dimension of the signal in which 
the  signal  will  have  an  infinite  number  of  representations 
which one tries to find most parsimonious, the one using the 
least possible components. The more redundant the base is and 
the more parsimonious the parsimonious representation will be. 
It remains then to develop the way to build these bases that fit 
the signals and the algorithms which make it possible to find 
with  the  lowest  costs,  a  parsimonious  representation,  in  the 
absence of The parsimonious representation.

One can also use this type of approach when the signal to 
be represented has an exact parsimonious representation in a 
redundant base which is then, in general, well characterized. It 
is  the  case  of  the  global  matching  filters.  The  goal  is  then 
precisely to find this exact parsimonious representation.

In the context of the goniometry which interests us here, 
one can typically apply this idea by using as observations not 
the  initial  data,  the  snapshots  which  are  in  general  of  null 
averages but a set of beam outputs pointed in a set of directions 
uniformly distributed in azimuth and in site. It is necessary that 
these observations (rebuilt) contain all the information already 
contained in the initial data (sufficient statistics) and leads to a 
well conditioned problem. The redundant base should then be 
created whose each component represents the contribution to 
this set of beams, a source or a path resulting from a source. 
Ideally,  without  disturbances,  errors  of  modeling,  errors  of 
discretization,  the  vector  of  the  observations  is  then  the 
weighted sum of a small number of components of the base. In 
reality,  it  is  necessary  to  take  into account  these  errors  and 
disturbances.  One  can  add  to  the  former  base  some 
contributions of the sources, one or more bases modeling the 
contributions of the disturbances (the noise in the observations 

etc.)  and tolerate  an error  in the representation.  One can,  in 
addition, introduce statistical properties of the observations and 
thus  hope  to  reach  performances  close  to  those  of  the 
maximum of likelihood. 

It  is  seen  however  that  the  number  of  parameters  to  be 
discretized can increase quickly (for example, if one wanted to 
model the correlation between the paths resulting from a same 
source) producing an unacceptable increase of the components 
to  be  considered  in  the  base.  Such  an  increase  not  only 
penalizes computing time but also the condition number of the 
problem  and,  in  a  certain  way,  the  probability  that  the 
representation needed is most possible parsimonious. 

In general, one replaces the research of representation the 
most  parsimonious,  which  could  be  done  only  using  an 
exhaustive  exploration  (and  which  thus  is  completely 
excluded) by the minimization of the standard ℓ1 norm of the 
weights and, of course, nothing makes it possible to guarantee 
that  neither  the  representation  thus  obtained,  nor  the  most 
parsimonious  representation,  is  the  exact  representation, 
desired. One can notice that, in practice, with simulations, that 
is generally the case and that the limits of the approach seems 
close to one of the maximum of likelihood approaches.

The parsimonious representation resolution of the problem 
can be summarized as follows:

min
x

1
2
∥Ax−b∥2+h∥x∥1 , h> 0 (1)

where  A contains  the  description  of  the  pattern  of  each 
antenna, b is the desired or measured overall pattern containing 
errors,  x the  weight  of  the  sources  and  h a  parameter  that 
regulates the order of magnitude of the errors of rebuilding or 
the constraints. The representation is independent of the array 
geometry.

III. APPLICATION TO PATTERN SYNTHESIS

The  pattern  synthesis  using  parsimonious  representation 
can be used in any application that needs to transmit power and 
performs electronic scanning. The maximum speed of the scan 
is directly linked to the studied bandwidth and the resolution of 
eq. (1). To ensure that the resolution of eq. (1) leads to  The 
absolute optimal solution, the filling of  A,  b and  h is done in 
such a way that we deal with a convex optimization problem.

An interesting property of that technique is that the solution 
obtained  has  always  the  minimum  number  of  necessary 
sources. 

Notice  that  each  antenna  can  have  its  own  pattern 
description,  that  the  patterns  can  be  either  theoretical  or 
measured. Coupling between antenna element is also included 
via the impedance matrix associated to the array.

To illustrate  the potentialities  of  this  technique,  figure  1 
shows the far field pattern of the synthesis of a non uniform 
sidelobe envelop with a uniform linear array (20 isotropic half-
a-wavelength-spaced elements).



Figure 1. Far  field  pattern  of  the  synthesis  of  a  non  uniform 
sidelobe envelop with a uniform linear array (20 isotropic half-a-wavelength-
spaced elements).

IV. APPLICATION TO DIRECTION OF ARRIVAL

In the analysis of the direction of arrival, the parsimonious 
representation of the problem is used to apply Global Matching 
Filters (GMF) without any assumption on spatial stationarity. 
Three version of the GMF are used. The brute force one, called 
GMF-1,  where  (1)  is  directly  solved.  The  version  GMF-2 
where  all  the information on the antenna,  the scene and the 
noise is passed to the matrix A. In this case A is whitened and 
normalized and  b is whitened. And the approximation of the 
maximum of likelihood, GMF-3. A is built in such a way that 
the algorithms to reach the ultimate resolution limit that is a 
function of the Cramer-Rao bounds [29].

In  order  to  illustrate  some  of  the  most  significant 
advantages of the GMF over the MUSIC algorithm, we now 
consider  a  linear  array  of  10  omni-directional  receiving 
antennas,  equally  spatially  distributed  at  half  a  free  space 
wavelength.  The  signal  is  composed  of  sequence  of  QPSK 
independent  symbols.  Each  algorithm  has  a  grid  of  120 
outputs.

A. Uncorrelated sources without calibration error

In  the ideal  case  of  no model  error,  Table  1  shows that 
MUSIC's resolution is never as good as the ones of the GMF 
based algorithms at any signal-to-noise ratio (SNR). On the top 
of that, the GMF algorithms not only estimate pretty well the 
directions of arrival of each emitting source, but also predict 
the associated amplitude levels as well. 

TABLE I. ANGULAR, ΔΘ,AND AMPLITUDE, ΔA, SEPARATIONS OF ALGORITHMS OF TWO 
EMITTING SOURCES AT A LEVEL A0, WHICH GUARANTY AN ANGULAR ESTIMATION ERROR 

BETTER THAN 1O OF EACH EMITTING SOURCE.

SNR
MUSIC GMF-1 GMF-2 GMF-3

Δθ ΔA/A0 Δθ ΔA/A0 Δθ ΔA/A0 Δθ

10dB 3o 100% < 2o 45% < 2o 23% < 2o

0dB 6o 18% < 3o 20% < 3o 15% < 3o

-10dB 10o 15% 8o 12% < 6o 12% 8o

10000 simulations, 150 snapshots and decorrelated sources

In the same manner, it is shown, on figure (2), that MUSIC 
has difficulties to separate close sources whereas GMF are well 

suitable,  but  at  the cost  of  a  heavier  computing load.  More 
generally,  GMF's performances are  close to the Cramer-Rao 
bounds, and most of the time better than MUSIC.

B. With calibration error

One takes the former simulations by introducing error on 
the model.  More  precisely,  one adds,  to  the nominal  vector 
direction, a noise, composed of a circular complex Gaussian 
vector,  whose  covariance  matrix  is  real  and  one  then 
renormalizes the vector thus obtained with its nominal norm 
value. 

For  a  high  standard  deviation  of  0.24  associated  to  the 
noise, MUSIC doesn't even predict correctly the directions of 
arrival at the high SNR=10dB. Predictions given by GMF-1 are 
also incorrect in both direction and amplitude. But the GMF-2 
and GMF-3 based algorithms continue to estimate pretty well 
both angular position and amplitude of the emitting sources, 
showing their robustness.

(a)

(b)

Figure 2. Outputs  of the algorithms MUSIC (blue) and GMF-3 
(green) normalized to the same noise level of two emitting sources at the level 
0dB, placed at 10 degrees and 16 degrees (a), and 10 degrees and 14 degrees 
(b). 150 snapshots are considered. The horizontal axis represents the angular 
position, in degree, on the horizontal plane, and the vertical one shows the 
power of the output of the algorithms.



C. Correlated sources

Table  2  shows  that  GMF-3  can  still  detect  the  correct 
directions in the presence of any level of correlation, Where as 
MUSIC tends to detect one source located at the middle of the 
two real source when the correlation increases. In the case of 
coherent paths, as shown on Table 2, methods like MUSIC are 
not  appropriate  anymore  because  the  row  of  the  matrix  of 
covariance  of  the  snapshots  is  not  equal  any  more  to  the 
numbers of present paths. Considering that the method is based 
on  the  contained  information  in  the  paths,  if  traditional 
techniques succeed in detecting and separating the sources or 
paths,  it  is  the  same  for  GMF  methods  with  an  improved 
resolution.

TABLE II. ALGORITHM PERFORMANCE COMPARISON WITH CORRELATED EMITTING 
SOURCES (AT 10O AND 16O)

MUSIC GMF-3

correlation θ10 [o] θ16 [o] θ10 [o] θ16 [o]

0 10.2 15.8 10.2 15.8

0.25 10.2 15.8 10.0 16.0

0.50 9.7 16.1 9.8 16.2

0.75 One source around 13o 10.4 15.6

1 One source around 13o 10.4 15.6

V. CONCLUSION

This  paper  presented  the  potentialities  of  parsimonious 
representation  in  pattern  synthesis  and  direction  of  arrival 
estimation. This technique opens new promising applications 
not only in electronic warfare with radar, direction finders, but 
also in telecommunications in general with the intelligent radio 
concept IEEE 802.22 for example.

In the transmission case, this representation, that produces a 
convex optimization problem, ensures to obtain of The absolute 
optimum minimizing the number of necessary feed.

In the reception  case,  the parsimonious representation  of 
beam formers results in an algorithm independent of the array 
geometry, that can handle coherent signals, and doesn't rely on 
any  prior  assumption  on  spatial  stationarity.  It  uses  global 
matching filtering in a way that its performances are close to 
the  Cramer-Rao  bounds,  and  most  of  the  time  better  than 
MUSIC, and gives not only the angular position of the source, 
as MUSIC does, but also estimates its signal level.
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