
Specific Emitter Identification Based on Amplitude 
Features 

 
Stefano D’Agostino#1, Goffredo Foglia*2, and Daniela Pistoia*3 

 # Italian Navy, 74100 Taranto, Italy, * Elettronica S.p.A., Via Tiburtina Valeria km 13.7, 00131 Rome, Italy 

 
 

Abstract  This paper describe the Specific Emitter 
Identification (SEI) technique applied to Electronic Support 
Measure (ESM) systems. The main idea is to analyze the radar 
pulses and characterize those by extracting features that should 
be different for each radar.  
In the paper, A-UMOP (Amplitude Unintentional Modulation 
On Pulse) feature extraction algorithms are proposed and used 
to characterize the radar pulses: a measurement campaign has 
been conducted to acquire real radar pulses from different 
radar modes and radar signals, to confirm the applicability of 
the proposed features extraction techniques with respect to the 
different radar setup. 
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I. INTRODUCTION 
 

Electronic Support Measure (ESM) sensors [1]-[3] are 
largely employed for emitter detection, classification and 
identification purposes.  

Classical radar systems perform classification and/or 
identification functions using target RCS measures or 
scattering distribution range profile extraction as in High 
Range Resolution (HRR) radars [4]-[6]. 

However using of ESM sensors offers great advantages 
with respect to the employment of traditional radar systems: 

• the lower cost of passive ESM sensors with respect to 
classic radar, due to the receive only architecture; 

• the un-detectability of the system, thanks to the 
passive based detection strategy; 

• the higher detection range obtainable by exploiting 
the one way signal attenuation, i.e. Range Advance 
Factor (RAF); 

• the all time and all weather capabilities, due to the 
intrinsic higher robustness to the sea-state (sea 
clutter) and rain (volumetric clutter), with respect to 
classical radar systems. 

Classical ESM systems are able to measure a large set of 
radar signal parameters: frequency, Pulse Repetition Interval 
(PRI), Pulse Width (PW), Phase Modulation On Pulse 
(PMOP) like chirp, barker codes etc. [7]-[9]. The possibility 
to digitally measure [10] such parameters gives to the ESM 
systems the opportunity to resolve targets, exploiting data 
processing techniques such as deinterleaving [11]-[13];  
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moreover there is also the possibility to identify targets on the 
basis of the classical waveform parameters, by means of a-
priori information, stored in the emitter library [14]. 

However, in most cases the traditional ESM systems 
cannot identify, in unique way, different devices of the same 
type or class. On the other hand this challenging task is 
addressed by the Specific Emitter Identification (SEI) 
methodology and techniques [15]-[16]. The basic idea is to 
collect the waveform from an emitter and then process the 
pulses to extract unique quantities. These quantities refer to 
different waveform features and should be different for each 
radar emitter. Those features typically includes intra-pulse 
features like Amplitude Unintentional Modulation On Pulse 
(A-UMOP), Phase Unintentional Modulation On Pulse (P-
UMOP) [17] or other signal characteristics that could be 
specific for a given emitter. For example in [17]-[18] the P-
UMOP feature of the received signal is exploited: a second 
order Power Spectral Density (PSD) function is evaluated 
(Bi-Spectrum) and further processed for feature extraction, 
leading to satisfactory results for simulated data. Other 
features of the real radar systems that can be exploit to 
identify in a unique way an emitter includes the non-linear 
distortions of the power amplifier [19]. In [20]-[21] the 
authors rely on Scaled Conjugate Gradient and M-estimation 
algorithms to improved the frequency alignment of the 
pulses. This technique is compared with the maximum 
likelihood estimation. In papers [22]-[24] is provided an 
overview of methods of identification emitter sources based 
on regression analysis: a formal mathematical approach is 
used in order to extract, select and classify radar signal 
features. In [25] feature extraction algorithms tested on real 
radar data, showing that if an emitter changes mode, also the 
features will change values: the comparison between two 
similar emitters has to be performed comparing the same 
radar mode (for example same frequency mode). Techniques 
like Resemble coefficient extraction and Support Vector 
Machine have been used in open literature [26] showing the 
ability to discriminate between emitters with different signal 
MOP. In this paper real radar signals have been acquired to 
apply some feature extraction algorithmic procedures on live 
radar data. The analyses have been conducted on different 
radar modes and different emitter to verify the robustness of 
the features extraction algorithm with respect to different 
case studies. The paper is organized as follows: in Section II 
is presented the SEI processing scheme, while Section III 
reports the algorithm used for the features extraction; section 
IV shows the obtained results on real data. Finally, in Section 
V some conclusions and future research tracks are given. 
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II.  SEI PROCESSING 
 

In this paper we focus on the characteristics of the single 
radar pulse: we assume that a radar emits a pulse train with a 
certain number of pulses that can be characterized by the 
classical radar waveform parameters (carrier frequency, PW, 
PRI, MOP, Amplitude etc.).  

Once the waveform has been detected and the classic 
parameters have been estimated (see Fig. 1), the Emitter 
Deinterleaving based on Classical Parameters will allow the 
extraction of the emitter track: the waveform is characterized 
in terms of carrier frequency, PW, PRI, MOP, and so on. The 
Un-identified Emitter Track is the input to the Classical 
Emitter Identification process. In the case of available a-
priori knowledge (i.e. data stored into the Classical Emitter 
Library), the emitter identification process associates the 
extracted track to a known emitter. 

The output of the Classical Emitter Identification 
functional block is an Identified Emitter Track, which 
designates the SEI processing. 

The SEI Automatic Feature Estimation block (see Fig. 1), 
is a set of rules that real-time implements the features 
estimation algorithms. Some of those algorithms are 
described in the next section. 

The extracted features, related to a specific radar 
waveform, provide further information and details on such 
emitter. The Identified Emitter track with the Extracted 
Features is the input of the SEI Identification Algorithms: 
with the aid of a-priori data stored into the SEI Emitter 
Library, the SEI processing identify the track in the case the 
specific emitter is already present into the library 
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Fig. 1.  Block diagram of the classical and SEI processing. 
 

 
II I. ALGORITHM FOR A-UMOP FEATURES 

EXTRACTION 
 

The SEI Automatic Feature Extraction block implements 
several algorithms, related to the different signal 
characteristics. The algorithms include both A-UMOP as well 
as P-UMOP extraction. In this Section we describe some of 
the algorithm dedicated to the A-UMOP Features Extraction 
(Fig. 2). The input is a single radar pulse assumed to be 

 

[ ] [ ] [ ]PWtttetAAtx tttfj +∈∆+= ∆++
00

)()(2 ,)()( 0 ϑϑπ       (1) 

where 0t represent the pulse start time, A represents the 

signal amplitude, f0 the radar carrier frequency, )(tϑ  the 

PMOP (for example barker, chirp, poly-phase, etc.), 
)(tA∆ and )(tϑ∆  represent respectively the A-UMOP and 

P-UMOP. The aim is to provide a characterization of 
)(tA∆ and )(tϑ∆  by the use of adequate algorithmic 

procedures. More precisely in this paper we will focus on the 
characterization of )(tA∆ . 
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Fig. 2.  Block diagram of the Algorithm for A-UMOP Features Extraction. 
  
The first step in the signal processing is to apply a Short 

Time Discrete Fourier Transform (STDFT), in order to 
estimate the carrier of the signal, and track its changes over 
time: 
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where 

• n represents the index related to the sampled 
time instant tn; 

• N represents the STDFT length in terms of 
sample number; 

• p represent the index of the output time frame; 
• k represents the index of the frequency; 
• x[n] represents the signal sampled at the time 

instant; 
• g[n] represents the windowing function; 
• represents the complex conjugate operator. 

 
An example of the output of the STDFT is provided in 

Fig. 3, where a radar pulse with a PW equal to 2.6us and a IF 
frequency after down-conversion of 710MHz has been 
considered. 
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Fig. 3  STDFT of a radar pulse. 
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The output of the STDFT is then properly analyzed in 
order to select the time/frequency areas that contain the 
useful signal components. 

In this way is possible to extract and digital down convert 
the useful signal, that can be represented by the following 
model 

 

[ ] [ ])()( 2 )(∆AA)( mmm tttfj
mm etty ϑϑπ ∆++∆⋅+=

          (3) 
 
where 
   
• y(tm) represents the useful signal sampled at the time 

instant tm; 
• A  represents the nominal amplitude; 
• ∆A(tm) represents the A-UMOP; 
• ∆f  represents the offset between the pulse IF 

frequency and the frequency after the digital 
down conversion.; 

• )( mtϑ  represents the PMOP (for example barker, 

chirp, poly-phase, etc.) 

• )( mtϑ∆  represents the P-UMOP.  

It can be observed that the terms )(∆A mt  and )( mtϑ∆   

contain the information useful for the SEI process, and the 
rate (tm- tm-1) of the UMOP data (that depends on the 
adopted digital down-conversion algorithm) has to be 
consistent with the expected bandwidth of the UMOP 
information. 

Let assume for sake of simplicity that the pulse is un-

modulated, i.e. 0)( θϑ ∆=mt , that represents the phase 

offset: it is possible to estimate the linear shape of the phase 
that is equal to 
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After this estimation, proper phase compensation is 

applied to the signal, obtaining by doing so 
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that contains both A-UMOP and P-UMOP. 

In the following part of the paper we will focus on the 
characterization of the A-UMOP. 

For example, in Fig. 4 is reported )( mtz  for the same 

pulse of Fig. 3, where is possible to note that the amplitude 
shape exhibits some differences with respect to the nominal 
rectangular shape. 

In particular is convenient to define four fundamental 
frames inside the signal duration (Fig. 5), in order to extract 
A-UMOP related to different characteristics: 

• Rise time frame: it refers to the power transition 
from the noise floor to the maximum amplitude; 

• Transitory time frame: is the interval after the rise 
time frame where the amplitude of the signal is not 
yet constant around the nominal amplitude value A; 

• Constant amplitude time frame: where the amplitude 
of the signal is almost constant around the nominal 
value; 

• Fall down time frame: it refers to the power 
transition from the nominal amplitude to the noise 
floor level. 
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Fig. 4  Envelope of the phase compensated radar pulse. 
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Fig. 5  Frame selection of envelope. 
 

This approach allows extracting a certain number of 
features for each time frame. In the following of the paper we 
will focus on typical characteristics already used in open 
literature [22]-[24], such as 

• Rise time duration, denoted as riset  

• Rise time slope, riseα  

• Overshoot, denoted as overR  

• Fall time duration, denoted as fallt  

• Fall time slope, denoted as fallα   

Those features will be extracted for each pulse with proper 
algorithms and will be represented over a 3-D space. 
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IV.  RESULTS ON REAL SIGNAL DATA 
 

To analyze the depicted SEI processing, a measurements 
campaign has been performed at Elettronica S.p.A. facilities. 
Two emitters of the same typology and with identical 
classical parameters have been properly down converted and 
captured and stored using a 8 bit Analog to Digital Converter 
with sampling frequency equal to 2GHz. We will refer to the 
first emitter as Emitter A and the second emitter as Emitter B. 
Details on the analyzed dataset are reported in Table I for the 
emitter A and Table II for the Emitter B. It can be noted that 
for each emitter, three operation modes are possible; more 
precisely the three radar modes of each emitter, denoted as 
Mode 1, Mode 2 and Mode 3, mainly differ one each other 
for the carrier frequency. 
 

TABLE I DATASET EMITTER A 
 Mode 1 Mode 2 Mode 3 

IF frequency (MHz) 600 674 710 
Nominal Peak Power (dBm) 63.63 
Nominal PW (us) 2.6 
Emitter Serial Number XXXX-XX-XXX-XX74 

 
TABLE II  DATASET EMITTER B 

 Mode 1 Mode 2 Mode 3 
IF frequency (MHz) 600 674 710 
Nominal Peak Power (dBm) 63.63 
Nominal PW (us) 2.6 
Emitter Serial Number XXXX-XX-XXX-XX65 

 
For each pulse, the five features previously described are 

extracted: in such way each pulse can be represented in a 
multidimensional space trough a five-dimensional vector 
 

( ) ( ) ( ) ( ) ( ) ],,,,[ iitiRiitPulse fallfalloverriserisei αα= (6) 

 
This process is repeated for 10 pulses for each radar mode 

of each emitter. 
However, in order to have a comprehensive representation 

of the obtained results, the extracted features have been 
properly grouped and plotted in a 3-D space, according to the 
following  vectors 

 

( ) ( ) ( ) ],,[ iRiit overriserisei α=∆
 

and                                                                                   (7) 

( ) ( ) ( ) ],,[ iRiit overfallfalli α=∇
 

with 
10,...,1=i  

 
In the next figures we will analyze the ability of the 

features to characterize the emitter in a unique way. The 
analysis will be done for all the radar modes to understand if 
the behaviour is invariant with respect to the radar mode.  

In Fig. 6 the A-UMOP features vectors i∆  and i∇ are 

shown for ten pulses of each emitter, with respect to the 
Mode 1: the two different emitters are plotted in two different 
colours in order to verify the ability of the extracted features 
to discriminate the two different radars. 

 It is possible to observe that the features of Emitter A 
(blue) and Emitter B (red) are placed in very different 

position, for both the i∆  as well as for the i∇   vectors. 

In this case, since the A-UMOP extracted features exhibit 
different values, a correct discrimination between Emitter A 
and Emitter B is possible. 
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Fig. 6  A-UMOP features for Mode 1, Emitter A (blue) and Emitter B (red). 
 

In Fig. 7 the A-UMOP features vectors i∆  and i∇ are 

shown for ten pulses of each emitter, with respect to the 

Mode 2. It can be observed that the vectors i∇  related to the 

two different emitters are partially overlapped; as to the 

features of the vectors i∆ , it can be noted that the values are 

partially overlapped even if the blue and the red vectors are 
centred around different values.   
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Fig. 7  A-UMOP features for Mode 2, Emitter A (blue) and Emitter B (red). 

 
Finally, in Fig. 8, the same analysis is reported with 

reference to the Mode 3, showing that the vectors i∇  related 

to Emitter A and Emitter B are completely overlapped: a 
discrimination procedure based only on such features will 
lead to wrong results. On the other hand, the features 
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associated with the vectors i∆  are distributed over different 

areas, especially with reference to the rise time feature. It can 
be underlined that in this case the majority of the information 
is concentrated over few features: the SEI discrimination 
procedure can exploit this behaviour in order to achieve 
higher performances. 
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Fig. 8  A-UMOP features  for Mode 3, Emitter A (blue) and Emitter B (red). 

 
     Is it possible to conclude that is not a-priori predictable 

if a feature will be useful to the signal discrimination, and the 
more the available extracted features, the higher the 
performances of the SEI processing (in accordance to[15], 
[25]). 

 
V. CONCLUSIONS 

 
In this paper the problem of SEI for radar emitters has 

been analyzed, also with the aid of real radar signals. 
A-UMOP Features extraction algorithm has been 

described and analyzed on real data, to asses the performance 
in terms of discrimination feasibility. 

The analyses have shown that for the majority of the case 
at the hand, one or more A-UMOP features allow a robust 
automatic classification procedure, in order to discriminate 
emitters that have equal nominal parameters but different 
serial numbers. 

Moreover the analyses have shown that is not a-priori 
predictable which features are able to provide information in 
order to maximize the performance of the discrimination 
algorithms. 
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