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Abstract—This paper presents algorithms for synthetic aper-
ture radar (SAR) image processing with target preservation.
SAR images are corrupted by speckle noise that degrades the
performance of processing algorithms applied to these images.
In several applications the speckle noise is reduced by filtering
algorithms, however this process can smear image details as punc-
tual targets. We approach image processing techniques developed
to deal with target preservation in three distinct applications:
segmentation, compression and filtering. The algorithms were
validated by tests on synthetic and real SAR images and the
results indicate that they constitute well-accepted approaches to
support SAR image processing with target preservation.

Index Terms—Active and passive sensors, SAR, target process-
ing.

I. INTRODUCTION

Targets can be detected from SAR images when an area of
few resolution cells presents distinguishable properties from
the clutter, usually indicating that this local area is too bright
[1]. This task is challenging due to the speckle phenomena and
the inaccuracy of traditional algorithms in processing SAR
images corrupted by such a noise. Most of the algorithms
propose pre-processing steps to filter speckle noise, which are
decoupled to the application, often degrading fine details and
edges that would be valuable for detection and compression
steps.

Attempting to solve these drawbacks we present three
frameworks for SAR image processing, reviewing their ad-
vantages regarding target preservation in three distinct appli-
cations. The first approach, as proposed in [2], detects target
by including speckle statistics [3] in the front propagation
model to enclose small or point targets and fine details in
L-looks amplitude SAR images. It is based on a level set [4]
evolution model to address the front movement according to
speckle statistics. Hence it incorporates a local neighborhood
homogeneity measure and an adaptive windowing scheme [5]
to achieve target detection in speckled images.

Our second approach was exposed in [6] and it consists of
a compression framework that tracks regions with targets in a
bounded variation image [7] to employ a lossless compression
method to these regions with the purpose of preserving targets.
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The adaptive compression scheme is a modified version of
the well known SPIHT method [8] named in this paper as
MSPIHT.

The filtering scheme presented in [9] combines the self-dual
reconstruction [10] and the Lee [11] and alternating sequential
[10] filters. The classical self-dual filter uses the median filter
to obtain marker images for the filtering process. Our approach
applies the Lee filter to generate marker images. The major
contribution of this filtering algorithm is to be fairly insensitive
to the choice of the window size in comparison with the Lee
filter. In addition, we can easily modify the proposed scheme
to include other standard speckle filters (e.g. Frost and Kuan)
to generate marker images.

This paper is organized as follows: We present in Section
II the method for SAR segmentation and in Section III the
one that approaches SAR image compression with the aim of
preserving targets. The speckle filtering algorithm is presented
in Section IV. Finally, Section V concludes this paper and
presents further works that can be investigated.

II. SMALL TARGET DETECTION DRIVEN BY SPECKLE
STATISTICS

The method for target detection proposed in [2] is based
on statistics of speckle into homogeneous regions. Speckle
is a noise always associated with coherent-illuminated scenes
and signal degradation is described in accordance with the
multiplicative model. The SAR system return X is given by
X = Y Z, with the speckle noise Z and radar cross-section Y
assumed statistically independents.

Let x be a pixel in a SAR image X (x ∈ X) and WM a
MxM sliding window centered in x, then the homogeneity
measure presented in [5] can be estimated in the x neighbor-
hood as the standard deviation to mean ratio. This measure is
a sample estimate of speckle noise standard deviation σz .

The adaptive scheme consists in changing the window size
M , automatically, while the pixel neighborhood is heteroge-
neous, a decision taken by comparing the speckle standard
deviation (σz) to the theoretical variation coefficient given by:

Cz =
0.5227√

Number of Looks
(1)

with a threshold T , namely

T = 1 +

√
1 + 2Cz

2

√
2M2

Cz (2)

The parameter T is an estimate of Cz , defined as a threshold
for the local homogeneity, which controls the window size
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decrease or increase. The goal is to obtain the optimum win-
dow size for local processing applications for image filtering
improvement [5].

The estimated homogeneity of the terrain reflectivity is more
accurate for larger windows due to the number of boundary
samples. Assuming that σz is a sample estimate, we can
measure the σz variation around the theoretical value.

Since the optimal window size is defined, the region fluctu-
ations close to the classification threshold T can be measured
by T −σz , thereby T −σz > 0 for non-homogeneous regions
and T−σz < 0 for homogeneous ones. These fluctuations can
be well tractable as a propagation model, which one leads to
convergence along the boundary T − σz ≈ 0.

The central idea in the level set methods is to represent a
front γ(t) as the initial level ψ(x, t) = 0 of a surface ψ (x, t),
where x ∈ <n [4]. The goal is to produce a front motion as
consequence of the surface motion, in which γ(t) is embedded
in accordance to:

γ(t)t=0 = (x|ψ(x, t) = 0)t=0 (3)

where

ψn+1 = ψn + ∆t F |∇ψn| (4)

and
F = −((T − σz) + εK)~n (5)

The term εK in Eq.(5) is the curvature speed [4].
Fig. 1 illustrates the processing steps of the proposed

algorithm applied to a synthetic image, which was artificially
contaminated with 6-looks speckle statistics, as depicted in
Fig. 1(a). Inspired by [12], we have used a set of fronts to start
the method. Fig. 1(b) shows the starting process, i.e the initial
level set stage. An intermediary stage of the front propagation
is depicted in Fig. 1(c) and Fig. 1(d) illustrates the final image
result.

(a) (b)

(c) (d)

Fig. 1. Level set evolution according to speckle statistics: (a) Synthetic image
with 6-looks speckle statistics, (b) initial level set stage, (c) intermediary stage
and (d) the final result.

Fig. 2 displays a RADARSAT 4 looks image over the
coastal zone in RN-Brazil. The sample size is 512x512 pixels

and it shows offshore oil platforms. One can observe that
our method succeeded in locating the small bright targets (oil
platforms).

Fig. 2. Segmentation result of the proposed algorithm applied to a real
4-looks SAR image (512 x 512 pixels) containing offshore oil platforms.

III. SAR IMAGE COMPRESSION WITH TARGET
PRESERVATION

This paper approaches image compression with target
preservation as an adaptive bit rate compression scheme re-
garding previous target neighborhood identification [6]. The
compression algorithm decomposes SAR images into BV and
L2 spaces [13]. This algorithm encloses two components:
u, with the low frequency information and v, with the high
frequency information; these components are associated to the
BV and L2 spaces, respectively, and provide image analysis
using distinct bands in the same resolution. Similar to [7], the
proposed scheme employs the Total Variation Minimization
(TV) method to obtain the u component. The oscillating
component v can be computed as a TV residual information.

To perform target detection, the u component is subdivided
into blocks according to a proposed criterion by using the
quadtree decomposition [14]. If a block meets this proposed
criterion, it is not subdivided, otherwise it is decomposed into
four blocks. The criterion is defined as σL <

√
L(σL−1),

where L is the quadtree decomposition level and σL is the
standard deviation of the inspected block.

Our aim is to allocate more bits in the compression process
to fine details scales. Hence in the highest decomposition
scale (16x16 blocks) we apply the arithmetic coder to pro-
vide a lossless data compression. The other scales (32x32,
64x64,128x128) are compressed by applying the SPIHT algo-
rithm [8] with decreasing bit rates.

Fig. 3(a) displays a scene of the coastal zone in RN-Brazil.
The image size is 256x256 pixels with 12.5 m resolution. It
was acquired in amplitude detection from the RADARSAT
system. The decomposition (BV ) result can be observed in
Fig. 3(b) which illustrates the preserved targets, bright points
in the top center and an oil slick down center in the u

component. The quadtree decomposition provides a partition
(grid) displayed in Fig. 3(c). It can be observed in Fig. 3(d)
bright targets in fine scales (16x16 and 32x32 blocks) and the
oil slick divided into 64x64 blocks.

The quantitative measures used to assess the experimental
results were PSNR (Peak Signal to Noise Ratio) and standard
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(a) (b)

(c) (d)

Fig. 3. (a) The original SAR image, (b) the u component, (c) the quadtree
decomposition (grid) superimposed in the original image and (d) the detected
targets.

deviation to mean ratio σm[14]. In addition, the MIE (Max
Intensity Error) [15] was locally computed as a measure
of fine details preservation. The modified SPIHT (MSPIHT)
outperformed the standard JPEG2000 compression method
according to the assessment measures. Furthermore, it was
superior to the conventional SPIHT method related to MIE
and σm measures.

Table I shows the evaluation of the algorithm performance
for two different bit rates, 0.2 bpp and 1.0 bpp. One can
observe that the proposed method presented similar PSNR
values as SPIHT with a reduction of 0.5 dB.

TABLE I
ASSESSMENT MEASURES

Bit Rate 0.2 bpp 1.0 bpp
PSNR(dB) 31.47 37.47

MSPIHT MIE(dB) 12.30 7.780
σm 0.194 0.277

PSNR(dB) 31.50 38.02
SPIHT MIE(dB) 13.80 10.41

σm 0.166 0.231
PSNR(dB) 31.13 37.34

JPEG2000 MIE(dB) 17.50 10.00
σm 0.154 0.274

Original Image σm = 0.278

IV. ITERATIVE SELF-DUAL RECONSTRUCTION FOR SAR
IMAGE ENHANCEMENT

Morphological reconstruction by dilation (or erosion) is
an operator that removes dark (or bright) regions from a
marker image constrained by a mask image. Particularly, self-
dual reconstruction combines reconstruction using dilation and
erosion to achieve the same treatment to dark and bright
regions of the image. The self-dual reconstruction Rν

′

g (f) of

a marker image f constrained by a mask image g is defined
by [10]:

[Rν
′

g (f)](x) =

{
[Rδ

g(f ∧ g)](x), if f(x) ≤ g(x).
[Rε

g(f ∨ g)](x), otherwise
(6)

where Rδ and Rε correspond to the morphological reconstruc-
tion by dilation and erosion, respectively.

Our method adapts the Lee filter with morphological recon-
struction by performing adequate noise removal with image
statistics, and maintaining fine image details. We propose that
the window size increases in each iteration according to the
relation: Wn = W1 + 2 × (n− 1), where W1 and n (n ≥ 1)
relate to the minimum window size (3x3) and the number of
the current iteration, respectively. Thus, the second iteration
generates a Lee filtered marker image with a 5×5 window
(W2), the third with a 7×7 window (W3), the fourth with a
9×9 window (W4) and so on.

The implemented algorithm denoted Iterative Reconstruc-
tion from Lee (IRLee) filter of order n is described as follows:

IRLeen(f) =

{
RL1(f)(f), for n = 1
RLn−1(IRLeen1(f))(f), for n > 1

(7)

where Ln(f) denotes the Lee filter applied to an image f

using a window of size Wn.
The IRLee filtering starts by considering the IRLee0

image to be the original one (speckled image), then the Lee
filter is applied to the IRLeen−1 image, generating a marker
image Ln and the final IRLeen image is obtained by the
reconstruction process using the original image as a mask.
Here, instead of estimating the standard deviation of the
speckle noise (σn) in each IRLee image we keep it constant
for every iteration. We assume that some pixel values in
each iteration are still affected by the multiplicative noise and
therefore we can use the same σn parameter for the Lee filter
with a larger window. This assumption is motivated by the self-
dual reconstruction filter effect obtained when it is applied to
the previous Lee filtered image. The self-dual reconstruction
filter modifies several pixel values turning them into values
closer to the related ones in the mask image.

To evaluate edge preservation in filtering process, we have
used the A coefficient [16], [17]. It is described as

A =
Γ(∆S − ∆S, ∆̂S − ∆̂S)√

Γ(∆S − ∆S,∆S − ∆S).Γ(∆̂S − ∆̂S, ∆̂S − ∆̂S)
(8)

where ∆S and ∆̂S are the high-pass filtered versions of an
original image (S) and the denoised one (Ŝ), respectively,
obtained with a 3×3 pixel standard approximation of the

Laplacian operator and the function Γ(S1, S2) =
K∑

i=1

S1i.S2i

[9].
Fig. 4(d) displays the A values calculated for the processed

images using the Lee and IRLee filters over the filtered
versions of the noisy image in Fig. 4(a). In Fig. 4(d), the curve
of A values for the Lee filter shows that the edges are not
preserved (A tends to values close to zero) as the window’s

ISSN: 1983 7402 São José dos Campos, 28 de setembro a 01 de outubro de 2010

178



size increases. This is an evidence that the use of the Lee
filter with an analyzing window with dimensions greater than
5×5 does not guarantee edge preservation. This effect is not
observed for the IRLee filter in the same graphic, where the
A values asymptotically approximates A=0.22 as the number
of iterations of the proposed algorithm increases.

(a)

(b)

(c)

(d)

Fig. 4. (a) Simulated 3 looks SAR image, (b) blurring effect observed for
n = 5 by applying the median filter, (c) the Lee filter to obtain the mask
images for the IRLee filter and (d) A values calculated to images processed
by the Lee filter using an window of increasing size (solid) and processed by
IRLee filter with an increasing amount of iterations (dashed).

Though the number of looks should, in principle, be an

integer, seldom this is the case when this quantity is estimated
from real data due to, among other reasons, the fact that the
mean is taken over correlated observations. It is therefore
interesting to call the equivalent number of looks;

Fig. 5 shows the filtering result of a real SAR image with
equivalent number of looks 4.5. The equivalent number of
looks is an estimated value over correlated observations from
real data. To evaluate the filter efficiency related to speckle
strength reduction, we have used the estimated standard devi-
ation to the mean ratio (σ̂z), which is shown in Fig. 5(b).

(a)

(b)

(c)

Fig. 5. Proposed filtering algorithm applied to SAR image with equivalent
number of looks 4.5. (a) Original image (b) filtering result and (c) (σ̂z)
evaluated in the several iterations.

V. CONCLUSIONS

We have presented three different approaches for SAR
image processing applications with the purpose of preserving
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targets. These techniques incorporate speckle noise statistics in
its design and furthermore they present two main advantages:
No preprocessing or postprocessing requirements to track
targets in noisy images and low sensitivity to multiplicative
noise.

Segmentation tasks in SAR image applications (e.g. point
target detection) can be complicated due to the granular
appearance of SAR images. Nevertheless, we approach and
overcome this difficulty by presenting a segmentation algo-
rithm for target detection without prior speckle filtering. The
segmentation results outlined an interesting and promising
approach which confirm that segmentation algorithms driven
by speckle statistics perform well in SAR images.

Regarding the compression application, we have presented
promising results, considering real SAR images. We can
observed the SPIHT performance related to fine detail preser-
vation can be improved without changing the bit rate signifi-
cantly.

When speckle filtering is required, it is expected that an
ideal speckle filter should reduce noise while preserving edges
and fine details. The standard Lee’s filter can reduce speckle
effects but it also smears edges. The IRLee algorithm is
effective in reducing speckle noise from uniform areas and
in enhancing and preserving edges, enabling larger windows
to be used, with consequent lower impact on edges and targets.

The other experiments included images contaminated by
speckle noise, following square root of gamma distributions.
The results pointed that the methods are appropriate for point
target detection in several applications.

Further developments should include the processing of size-
independent targets such as military tanks, archaeological sites,
ice floe, buoys for oceanographic studies and different clutter
backgrounds.
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