
A Novel State Minimization Method for Extended
Burst-Mode Machines Based on Genetic Algorithm

Tiago Curtinhas, Duarte L. Oliveira, Lester A. Faria, Osamu Saotome

Divisão de Engenharia Eletrônica do Instituto Tecnológico de Aeronáutica – IEEA – ITA
Marechal Eduardo Gomes, 50 – CEP 12.228-900 – SJC – São Paulo – Brazil

Abstract  Nowadays, the design of complex synchronous
digital systems shows serious difficulties relating to the global
clock signal and to Deep-Sub-Micron MOS technology.
Asynchronous design shows to be an interesting alternative to
solve these difficulties. Asynchronous Finite State Machines
(AFSM) are widely used for the design of the control unit of
asynchronous digital systems. A very popular machine is the
extended burst-mode AFSM (XBM_AFSM), and one of the most
important steps in the synthesis of these machines is the state
minimization. This paper proposes a novel method for state
minimization of XBM_AFSMs. Such machines are implemented
in Huffman architecture (XBM_HMs). The proposed method
performs a minimum coverage using genetic algorithm. The
XBM_HMs present a better interaction with fast environments,
reduce the cost of timing analysis and show a high potential for
a better cycle time when compared to HM architecture with
output feed-back, which is the target architecture of the 3D tool,
the state of the art in synthesizing XBM_AFSMs. The proposed
tool is tested for an extensive set of benchmarks showing high
efficiency, obtaining an average reduction of 25% in the number
of states.

Index Terms— Asynchronous logic, genetic algorithm, AFSM.

I.-INTRODUCTION

The difficulties in designing complex synchronous digital
systems, due to the global clock signal [1,2] and Deep-Sub-
Micron MOS technology [3], can be overcome with
asynchronous circuits. Asynchronous designs present
potential advantages when compared to their synchronous
counterparts, such as: no clock skew, no distribution of the
clock, lower power consumption, larger modularization and
more robustness against temperature variations and
electromagnetic interactions [4]. On the other hand, its main
disadvantage is the lack of tools for automatic synthesis [5,6].

Asynchronous FSMs are important components of an

asynchronous digital system, which may be composed by a
network of FSMs + data-paths [6]. Many digital systems are
composed by components like data-paths and controllers [5-
8]. Two traditional styles of specification have been proposed
to describe asynchronous controllers for an optimized
synthesis: Signal Transition Graph (STG) and Burst-Mode
(BM).

Tiago Curtinhas, thiagohd@ita.br; Duarte L. Oliveira, duarte@ita.br,

Tel. 55+ (12) 3947-6813; Lester A. Faria, lester@ita.br; Osamu Saotome,
osaotome@ita.br.

 STG was proposed by Chu [9] and is a Petri-net
description. The main strength of STG is the ability to
describe concurrence between inputs and outputs (I/O
concurrence) that occur in asynchronous systems. It naturally
describes timing diagrams that are quite used on the
interfaces design. However, there are several descriptions in
STG that cannot be implemented, because the description
becomes very confusing when manipulating a large number
of signals. Furthermore, this type of description may over-
grow in size, besides not being familiar to designers of the
synchronous world.

BM was proposed by Coates et al. [10], formalized by
Nowick [11] and extended by Yun and Dill [12], as extended
burst-mode (XBM). It is used to describe asynchronous finite
state machines (AFSM) of Mealy type. The XBM
specification is based on state diagram, being familiar to
designers. She describes from synchronous FSMs of Moore
type up to AFSMs of heterogeneous systems. XBM_AFSMs
operates as a class of MIC (multiple input change), called
burst mode. These machines interact with the environment in
generalized fundamental mode (GFM). In this mode, a new
set of input signals (input burst) will be activated only if the
machine is in a stable state, i.e. there is no activity on the
gates and lines. The XBM_AFSMs obey to the bounded gate
and wire delay model, and have been applied on important
academics and industrials designs [13-17].

For the automatic synthesis of XBM AFSMs, the 3D

method is well-known, as proposed by Yun and Dill [12].
This method implements the circuits as Huffman machines
with output feed-back (HMFO – see Fig. 1). The HMFO
architecture leads to smaller areas when compared to
traditional Huffman machines (MH – see Fig. 2) because it
uses the output signals as states signals, thus reducing the
need for states signals. As the output signals are feed-back in
HMFO architecture, there is a high potential to the output
equations have a higher latency time when compared to
traditional HMs, once these machines states are represented
only by states signals [18].

The BM_HMs allows processing state transitions in one

of the two machine cycles, which are: input burst→output
burst concurrently with state signals; and input burst→state
signals→output burst. Consequently, the HM architecture is
the most suitable for interacting with fast environments,
because HMFO architecture uses machine cycles that may
violate the GFM. By violating the GFM, delay elements
should be inserted, degrading the performance and reliability
of AFSMs.

mailto:thiagohd@ita.br
mailto:duarte@ita.br
mailto:lester@ita.br
mailto:osaotome@ita.br
Felipe
Nota como Carimbo

LAB-GE
Text Box
 ISSN:1983 7402 ITA, 23 a 25 de setembro de 2014

LAB-GE
Text Box
64

As the output signals tend to be fed back in the HMFO
architecture, the 3D method uses the machine cycle, input
burst→state variable→output burst, when interacting with
fast environments. This machine cycle, besides causing a
penalty in cycle time [18], does not guarantee a definitive
solution for the violation of the GFM, because the output
signals are fed back.

Despite showing a potential for larger area, the HM
architecture presents some interesting features, especially
when interacting with fast environments. The XBM
specification supports level sensitive signals (LSS) with non-
monotonic behavior, which lets you to interact with
conventional functional units, synchronous processors and
even heterogeneous systems. These different environments
may have a common characteristic: they have a faster
response time.

This paper proposes a novel method for state

minimization of Huffman machines that support the XBM
specification (XBM_HMs). The proposed method uses
modified classical algorithms to obtain the maximum
compatibility classes and minimum coverage, which is
performed by using genetic algorithm. Authors are unaware
of the existence of any algorithm for minimizing states for
XBM_HMs machines such this one. As the XBM
specification incorporates the BM specification and
Minimalist tool [19] synthesizes BM_HMs machines, it was
possible to compare results of an extensive set of BM
benchmarks, considering our method of states minimization
and the method of states minimization proposed by Führer et
al. [20], which is incorporated in the Minimalist tool.

Hazard-Free
Combinational

Network

Inputs

Outputs

Variables of state

Fig. 1. Huffman machine with feed-back output – HMFO.

Hazard-Free
Combinational

Network

Inputs Outputs

Variables of state

Fig. 2. Huffman machine – HM.

II.-EXTENDED BURST-MODE SPECIFICATION
(XBM)

 The BM specification is represented by a diagram of state
transitions, where transitions can occur for single, or multiple

input changes. It is necessary to define the initial state. Each
state transition is represented by an arc in the diagram, and is
labeled by a set of input signals and/or output signals. These
sets are called input (output) bursts. The signals are always
transition sensitive (0→1, or 1→0) and are called transition
sensitive signals (TSS). Each input burst has to be no empty.
If any change occurs in the inputs, the machine stays in the
same state. The input burst are monotonic, changing only
once during each state transition. The BM specification has to
respect the polarity property, unique entry point, and the
maximal set property.

 The XBM specification inherits the same characteristics of
the BM specification and adds up the level conditional
signals and direct don’t-care signals. The level conditional
signals allow describing in different ways two or more state
transitions, depending on the level (0 or 1) of one or more
input level conditional signals. The transition sensitive
signals could be direct don’t-care, which describes
concurrency between inputs and outputs. A level conditional
signal (level sensitive signal – LSS) can switch freely if it is
not labeled by a state transition (non-monotonic behavior). If
it is, it has to meet the setup and hold time requirements. The
direct don’t-care signals should have only one monotonic
transition. Every state transition in XBM has a so-called
compulsory signal, which in the previous transition was not a
direct don’t-care signal (terminating signal).

Fig. 3 illustrates a XBM specification that describes the
SCSI_INIT-SEND (small computer systems interface) bus
controller, as defined by the ANSI standard X3.131-1986,
which is a physical and logical communication protocol
between computers and peripheral devices (see Fig. 3). The
SCSI benchmark contains 4 entries (Cntgt1, Fain, Ok, Rin), 2
outputs (Aout, Frout) and an initial state 0. The description
Rin+ Fain- / Aout+ in the transition 5→3 means that the
output (Aout: 0 to 1) will be activated when the burst input is
enabled (Rin: 0 to 1 AND Fain: 1 to 0). The LSS signal cntgt1
is used to describe the mutual exclusion between transitions
3→6 and 3→4. One example is the arc labeled with [<cntgtl-
> rin- / aout-] that means if cntgtl=0 and the rin input
changes from 1 to 0, the aout output will change from 1 to 0.
The “directed don't-care” signal Rin*, in transition 4→5,
means that Rin can change its value or remain in its previous
value. In the state transition 2→3, the signal Fain is
compulsory. Yet other restrictions have to be met on the
XBM specification [12].

<Cntgt1+>
Rin- / Aout- Frout+

0

1

3

5

4

6

2

Ok+ Rin* /
Frout+

Fain+ Rin* /
Frout-

Ok- Rin* /

Rin+ Fain- /
Aout+

<Cntgt1->

Rin- / Aout-

Fain+ Rin* /

Frout-Rin+ Fain- /
Aout+

Fig. 3. XBM Specification: SCSI_INIT-SEND.

Felipe
Nota como Carimbo

LAB-GE
Text Box
65

LAB-GE
Text Box
 ISSN:1983 7402 ITA, 23 a 25 de setembro de 2014

III.-XBM STATE CODING PROPERTY

 The XBM specification describes FSMs of Mealy type.
The FSMs of Mealy type will be implemented as Huffman
machines (HM), where the states are solely identified by the
state variables (see Fig. 2).

 Definition 1: A finite state machine (FSM) is described
by a 4-tuple <S,I,O,T>, where S is a finite set of states; I is a
finite set of inputs; O is a finite set of outputs; T is a finite set
of state transitions. A state transition is represented by two
cubes (A, B), which denotes all legal path [A, B], where A is
the cube of input and B is the cube of output [11,21].

 A XBM specification is well-formed if it satisfies the
properties of polarity, distinguishability constraint and unique
entry condition, as proposed in [12]. The XBM specification,
when implemented in the HM architecture, must satisfy the
condition of the bridge state.

Definition 2: Bridge state XBM (XBM_BS) says that a well-
formed XBM specification satisfies the XBM_BS condition
if in all state transition coming out from a state decision with
LSS signals, there is at least one bridge state inserted in each
state transition generating a multicycling.

 Figure 4 shows the XBM specification of the SCSI_INIT-
ISEND benchmark that presents the state decision 3
involving the LSS Cntgt1 signal, where the states bridges 6'
and 4' were introduced to satisfy definition 2.

 / Aout-
<Cntgt1+>

Rin- /

0

1

3

5

4

6

2

Ok+ Rin* / Frout+

Fain+ Rin* /
Frout-

Ok- Rin* /

Rin+ Fain- /
Aout+

<Cntgt1->

Rin- /

Fain+ Rin* /

Frout-Rin+ Fain- /
Aout+

4'6'
/ Aout- Frout+

Fig. 4. XBM specification: SCSI-INIT-ISEND with bridge states.

IV.-STATE MINIMIZATION: XBM_HM

 To perform the merging of states in the XBM_HMs we
introduce a new definition for compatible states. The method
of merging of states starts from the XBM specification,
which satisfies the condition of bridge state (XBM_BS).

Definition 3: Merging of states MS_XBM_BS. Be any two
states Si and Sj of a XBM specification. It is said that Si and
Sj can fuse, if Si and Sj are compatible states in XBM_BS.

Definition 4: Compatible states XBM (CS_XBM). Be any two
states Si and Sj of a XBM_BS specification. It is said that Si
and Sj are compatible states if the value of the outputs they
specifies are equal, if the next states, if specified, are
compatible, Si and Sj are not bridge states and do not violate
the requirements of logic cover [22].

 The proposed method of state minimization of XBM
Huffman machines consists of four steps:

1. Insert bridge states in the XBM specification and obtain

XBM_BS.
2. Generate the table of pairs of compatible states XBM

(XBM_Table), using definition 4 [23].
3. From the XBM_Table, generate the classes of states of

maximal compatibility (CSMC_XBM) [23].
4. From XBM_Table and CSMC_XBM perform the

minimum coverage, using genetic algorithm [24]. The
minimum coverage obtains the lowest number of
CSMC_XBM that covers all states of XBM_BS and
satisfies the property closing.

 The algorithm in Fig. 5, of XBM-SPEC, creates the merge
table and generates a set of maximal compatibility class. The
minimum covering is performed by a genetic algorithm

Fig. 5. State minimization for XBM_HMs: procedure.

A. XBM_Table

 Illustrating the step of states minimization, we use the
XBM specification of Fig. 4 as table of flow in Fig. 6. The
first step generates the table of pairs for compatible states,
where "V" and "X" shows the compatible and non-
compatible states respectively (see Fig. 7).

Fain Ok Rin

Scsi-init-send-specification

S0, 00 S0, 00 S1, 01 S1, 01

S1, 01 S1, 01 S2, 00 S2, 00

S3, 10 S2, 00 S2, 00 S2, 00

S3, 10 S6', 10

S1, 01 S1, 00 S0, 00 S0, 00

S2, 00 S2, 00 S1, 01 S1, 01

S2, 00 S2, 00 S2, 00 S3, 10

S4', 10 S3, 10
S4, 01 S4, 01 S5, 00 S5, 00

S3, 10 S5, 00 S5, 00 S5, 00

S0, 00 S0, 00 S6, 00 S6, 00

S5, 00 S5, 00 S4, 01 S4, 01

S5, 00 S5, 00 S5, 00 S3, 10

S6, 00 S6, 00 S0, 00 S0, 00

0
1
2
3
4
4
6

Cntgt1=0 Cntgt1=1
000 001 011 010 110 111 101 100 100 101 111 110 010 011 001 000

S6, 00

S4, 01

S6, 00

S4, 01

S6'
S4'

Fig. 6. Table of flow of the SCSI-INIT-ISEND.

Felipe
Nota como Carimbo

LAB-GE
Text Box
66

LAB-GE
Text Box
 ISSN:1983 7402 ITA, 23 a 25 de setembro de 2014

V

X

X

1,4

X

X

X

X

2, 5

X

X

X

X

V

X

X

X

X

X

X X

1
2
3
4
5
6

0 1 2 3 4 5

(0, 1)

(0, 4)

(1, 4)

(2,5)

(a) (b)

Fig. 7. SCSI-INIT-ISEND: a) XBM_Table; b) graph of dependency.

B. CSMC_XBM

 The second step generates the classes of maximum
compatibility, shown in Fig. 8 and the classes {3},{6} and
the classes (bridge states) {4’} and {6’}.

5 {2, 5}

Compatible Máximal compatibilityState
2

4 {2, 5}; {1, 4}1

1,4 {2, 5}; {0, 1, 4};0

set of maximal compatibles

Fig. 8. Set of classes of maximal compatibles of the SCSI-INIT-ISEND.

C. Minimum coverage based in genetic algorithm

 The algorithm 1 (see Fig. 5) is a technique for
optimization and stochastic search, called Genetic Algorithm
(GA), being applied in the step of minimum coverage [24]. In
the step of state minimization, the step of minimum coverage
is a problem of unate coverage [20] that is, to obtain the
smaller number of classes of maximal compatibility, covering
all states. Due to the possibility of enumerating the classes of
maximal compatibility, the encoding used on the
chromosome is an entire coding, a vector of integers. From
the listed classes, it is one way to represent a possible
solution. The chromosome 𝐶𝐶0 , in Fig. 9 is a sub-set of the
classes, using the entire coding.

C1. Evaluation

The states minimization for XBM_HMs, in case the
problem of minimum coverage, the equation (1) shows the
Fitness function, where "Sc" is the number of states covered.
The Fitness is responsible for classifying a population of
individuals aiming to find the smallest set of classes of
maximal compatible Fitness=K, where K ≤ N, and N is the
number of CSMC and K is the smallest set of CSMC that
cover all states of XBM_BS.

Fitness = ∑ Sc (1)

C2. Selection

The selection is performed in groups of 15 individuals
where the best ones are compared “two by two” and the
algorithm chooses the two “most suitable” chromosomes for
the crossover. The same 15 individuals continue to be
considered for the next generation processes, once it is
desirable to keep the best features of these “most adapted”
chromosomes improving the next generations.

C3. Crossover

This step is based on the “crossover operator”, which is
related to a relative occurrence rate and shows a rate above
60%. Its main goal is to provide a greater diversity of codes
for dichotomy equal to zero. It is responsible for generating
new offsprings from this population. Individuals are
classified as they better satisfy condition 1. Fig. 9 illustrates
the effects of crossover and mutation operators in a
chromosome of four classes. As shown in Fig. 9, the pairs are
selected among the best chromosomes: C1 and C2 generate a
new individual that is C3.

C4. Mutation

“Mutation operator” is related to a relative occurrence
rate. Due to the application of crossover operator, after some
interactions, the population tends to become very
homogeneous. To prevent that and further explore the search
space, the mutation operator changes the value of some
chromosomes as shown in Fig. 9, where one bit of
chromosome "𝐶𝐶3" has its value changed from 1 to 0.

Chromossome Crossover Mutation

[3 2 0 1] : 𝐶𝐶0

[3 2 0 1] : 𝐶𝐶1
[4 5 0 6] : 𝐶𝐶2
[4 5 0 1] : 𝐶𝐶3
[3 2 0 6] : 𝐶𝐶4

[3 2 0 6] : 𝐶𝐶3
[3 2 1 6] : 𝐶𝐶3′

Fig. 9. Representation of chromossome.

 The evolutionary process, starts from a randomly
generated population P_0 of chromosomes and a value of k
classes equal to 1. For 500 generations, the population is
subjected to the evolutionary process: objective function,
selection, crossover and mutation (Fig. 4). If it finds a
solution, the algorithm returns; otherwise k is incremented
and the chromosome size increases in a position and the
process restarts.
 After the coverage is performed, the states of the
specification SCSI-INIT-ISEND were reduced from 7 to 6
(see Fig. 10), two classes were used from Fig. 8, in addition
to the class {S3},{S6}, {S4’} and {S6’} that not are
compatible with any other class, and were inserted in the final
solution.

 S0' = {0, 1, 4}
 S1' = {2, 5}
 S2' = {3}
 S3' = {6}
 S4' = {S4'}
 S5' = {S6'}

Fig. 10. Coverage unate: SCSI-INIT-ISEND.

Felipe
Nota como Carimbo

LAB-GE
Text Box
67

LAB-GE
Text Box
 ISSN:1983 7402 ITA, 23 a 25 de setembro de 2014

V.-EXPERIMENTAL RESULTS

The proposed method of states minimization was
implemented in C language and incorporated in the SAGAAs
(State Assignment Genetic Algorithm Asynchronous) tool
[25]. It was tested in 44 benchmarks of asynchronous
paradigm, where 14 are XBM and other 30 are BM. The
compared tool is the Minimalist [19] which is considered the
state of the art, but only accepts BM. For the XBM
specification, implemented as Huffman machine (XBM_HM),
does not exist in the literature a tool that synthesizes the
XBM_HM machines. Also, is not possible any kind of
comparisons, due to the need of inserting bridge states when
there are LSS signals, we evaluated the ability of our method
of minimization. All benchmarks were synthesized in HM
architecture.

Table I shows XBM specifications, where in/out/st/tran

mean respectively the numbers of input signals, output
signals, states and state transitions. Table 1 also shows, the
states minimization of the XBM specification objectifying to
HM architecture. For SAGAAs tool, the results St/T which
mean respectively: final number of states and time of
processing. The SAGAAs tool obtained an average reduction
of states of 25%.

TABLE I RESULTS: NUMBER OF STATES IN XBM

Benchmark
Specification
In Out St Tr

#Sagaas
St tempo(s)

ack-xbm1 4/5/8/10 6 1.11
ates-xbm 5/3/15/21 9 1.67
biu-dma2fifo 4/2/7/9 8 0.01
chu-133-2 3/3/4/4 3 0.01
ex02 4/2/10/15 9 1.40
ex-des 5/7/7/8 5 0.86
ex-sad 5/11/11/15 11 1.02
ex-speak 4/3/8/10 6 0.91
ex-tese_yun 3/2/4/4 2 0.23
fifo-cell-ctrl 2/2/3/3 3 0.02
hp-ex01 5/5/7/7 2 0.35
sbuf-sct 3/3/8/9 4 0.52
yun-diffeq-mul1 3/3/4/4 3 0.04
yun-diffeq-mul2 3/3/3/3 3 0.02

Table II shows BM specification where in/ Out /St/ Tr

mean respectively the numbers of input signals, output
signals, states and state transitions.

Table II also shows for Minimalist and SAGAAs tools the

results St/T, which mean respectively: final number of states
and time of processing. The SAGAAs tool compared to
Minimalist obtained an average reduction of states of 1% and
average reduction of time of processing of 98% The
Minimalist tool failed to minimize the benchmark counter-bin.

TABLE II RESULTS: NUMBER OF STATES IN BM

Benchmark
Specification
In Out St Tr

#Minimalist
St T(s)

#Sagaas
St T(s)

alloc-outbound 4 3 8 9 5 0.26 5 0.21
call-proc 3 3 12 16 2 0.41 2 0.31
concur-mixer 3 3 5 6 3 0.25 3 0.12
counter 2 9 17 17 16 13,471 16 8,729
counter-bin 1 5 32 32 -- --.-- 32 93,352
dme-e 3 3 8 10 3 0.40 3 0.19
dme-fast-e 3 3 8 10 5 0.45 4 0.29
hp-ir-sc-ctrl 13 14 33 42 13 51,10 13 65,625
isend 4 3 9 11 6 0.35 5 0.27
isend-bm 5 4 10 12 4 0.38 4 0.23
isend-csm 5 4 8 9 3 0.47 3 0.18
it-control 5 7 10 12 4 0.38 5 0.66
mp-f-p 3 4 4 4 2 0.23 2 0.14
nak-pa 4 5 6 6 2 0.27 2 0.16
nowick 3 2 6 6 2 0.58 2 0.15
opt-token-dist 4 4 12 12 6 0.40 6 0.68
pe-send-ifc 5 3 11 14 5 0.47 5 0.83
pscsi 10 5 45 62 10 --.-- 9 58,178
pscsi-tesend-bm 4 4 10 12 6 0.48 6 1,191
ptrcvb1 4 4 7 9 4 0.35 4 0.25
qr42 2 3 4 4 3 0.27 3 0.15
re-setup 3 2 6 7 2 0.42 3 0.31
ring-counter 1 2 8 8 8 0.35 8 6,708
sbuf-sct 3 3 8 9 4 0.39 4 0.43
scsi-tsend-bm 5 4 11 13 5 0.86 5 0.55
sdcont2 8 12 27 32 13 11,554,329 13 17,156
stetson-p2 8 12 25 28 13 95,368 13 8,603
stetson-p3 4 2 8 11 3 0.33 3 0.21
strcv-bm 5 4 10 12 4 0.67 4 0.54
yun-diffeq-alu1 3 5 7 9 5 0.37 5 0.18

total 161 11,662,668 160 149,671

VI. CONCLUSION

In this paper a novel method for state minimization for

the XBM_AFSM was presented, which is based on genetic
algorithm. The XBM_AFSMs were implemented in HM
architecture, which potentially presents a better latency time
and better interacts with fast environments, when compared
to the HMFO architecture. This paper also introduced the
concept of bridge state, which solves the problem of logical
hazard associated with the LSS signals with non-monotonic
behavior. As future work it is foreseen to finish the SAGAAs
tool for logic synthesis of XBM_HM machines. For this we
will develop algorithms for steps of state assignment and
logic minimization.

REFERENCES

[1] E. G. Friedman, “Clock Distribution Networks in Synchronous Digital

Integrated Circuits,” Proc. of. The IEEE, vo. 89, pp. 665-692, 2001.
[2] A. Jain et al., “A 1.2 GHz alpha microprocessor with 44.8 GB/s chip

pin bandwidth,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp.
240–241, February, 2001.

[3] B. H. Calhoun, et al. “Digital Circuit Design Challenges and
Opportunities in the Era of Nanoscale CMOS,” Proceedings of the
IEEE, Volume 96, Issue 2, February 2008.

[4] C. J., Myers, “Asynchronous Circuit Design”, Wiley & Sons, Inc.,
2004, 2a edition.

[5] T. Chelcea, et al., “A Burst-Mode Oriented Back-end for the Balsa
Synthesis System,” Proc. Design, Automation and Test in Europe
(DATE), pp.330-337, March 2002.

[6] J. Cortadella, et al., “Desynchronization: Synthesis of Asynchronous
Circuits from Synchronous Specifications,” IEEE Trans. on CAD of
Intr. Cir. and Sys. vol. 25, Nro. 10, pp.1904-1921, October 2006.

Felipe
Nota como Carimbo

LAB-GE
Text Box
68

LAB-GE
Text Box
 ISSN:1983 7402 ITA, 23 a 25 de setembro de 2014

[7] J. Sparsø, “Current Trend in High-Level Synthesis of Asynchronous
Circuits,” Proc.16th IEEE Int. Conf. on Electronics, Circuits and
Systems, pp.347-350, 2009.

[8] J. Yang, et al., “HDLs Modeling Technique for Burst-Mode and
Extended Burst-Mode Asynchronous Circuits,” IEICE Trans. on
Fundamentals of Electronics, Communications and Computer
Sciences, vol. 2010, N. 12, pp. 2590-2599, 2010.

[9] T. -A. Chu, “Synthesis of Self-Timed VLSI Circuits from Graph-Theory
Specifications,” Ph.D. thesis, June, 1987, Dept. of EECS, MIT.

[10] B. Coates, A. Davis, and K. Stevens, “The post office experience:
Designing a large asynchronous chip,” Integration, VLSI J., vol. 15,
no. 3, pp. 341–366, Oct. 1993.

[11] S. M. Nowick, “Automatic synthesis of burst-mode asynchronous
controllers,” Ph.D. dissertation, Stanford Univ., Dept. Comput. Sci.,
Stanford, CA, 1993.

[12] K. Y. Yun e D. L. Dill, "Automatic Synthesis of Extended Burst-Mode
Circuits: Part I (Specification and Hazard-.Free Implementation) and
Part II (Automatic Synthesis)," IEEE Trans. on CAD of Integrated
Circuit and Systems, Vol. 18:2, pp. 101-132, Feb. 1999.

[13] S. M. Nowick et. al, “The Design of a High Performance Cache
Controller: A Case Study in Asynchronous Synthesis” Integration, the
VLSI Journal, Vol. 15, no 3, pp. 241-262, October 1993.

[14] K. Y. Yun, et al., "The design and verification of a high-performance
low-control-overhead asynchronous differential equation solver,"
IEEE Transactions on VLSI Systems, vol. 6, no 4, pp.643-655,
Dec.1998.

[15] K. S. Stevens, et al., "An asynchronous instruction length decoder,"
IEEE Journal of Solid-State Circuits, vol. 36, nro. 2, pp. 217-228,
February, 2001.

[16] J. Muttersbach, “Globally-Asynchronous Locally-Synchronous
Architectures for VLSI Systems,” Ph.D. Thesis, ETH, Zurich, 2001.

[17] J. Pontes, et al., “SCAFFI: an Intrachip FPGA asynchronous interface
based on hard macros,” 25th Int. Conf. on Computer Design, pp.541-
546, 2007.

[18] S. M. Nowick and B. Coates, “UCLOCK: Automated design of high
performance asynchronous state machines,” in Proc. Int. Conf.
Computer Design (ICCD), pp. 434–441, October 1994.

[19] R. M. Fuhrer, et al., “Minimalist: An environment for the Synthesis,
verification and testability of burst-mode machines,” Technical Report,
Columbia University, TR-CUCS-020-99, 1999.

[20] R. M. Fuhrer, “Sequential Optimization of Asynchronous and
Synchronous Finite-State Machines: Algorithms and Tools,” Ph.D.
Thesis, Columbia University, 1999.

[21] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued
optimization for PLA optimization. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 6(5):727{750,
September 1987.

[22] S. M. Nowick and D. L. Dill, “Exact two-level minimization of hazard
free logic with multiple-input changes,” IEEE Trans. Computer-Aided
Design, vol. 14, pp. 986–997, Aug. 1995.

[23] S. H. Unger, “Asynchronous Sequential Switching Circuits,”. New
York: Wiley-Interscience, 1969.

[24] J. F. Miller (editor), “Cartesian Genetic Programming,“ Springer,
p.344, 2011.

[25] T. Curtinhas, et al., “A novel state assignment method for Extended
Burst-Mode FSM design using Genetic Algorithm,” 27th Symposium
on Integrated Circuits and Systems Design,” paper accepted, 2014.

Felipe
Nota como Carimbo

LAB-GE
Text Box
69

LAB-GE
Text Box
 ISSN:1983 7402 ITA, 23 a 25 de setembro de 2014

	A Novel State Minimization Method for Extended Burst-Mode Machines Based on Genetic Algorithm
	I.-INTRODUCTION
	II.-EXTENDED BURST-MODE SPECIFICATION (XBM)
	III.-XBM STATE CODING PROPERTY
	IV.-STATE MINIMIZATION: XBM_HM
	V.-EXPERIMENTAL RESULTS
	VI. CONCLUSION
	REFERENCES

