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Abstract  Nowadays, the design of complex synchronous 
digital systems shows serious difficulties relating to the global 
clock signal and to Deep-Sub-Micron MOS technology. 
Asynchronous design shows to be an interesting alternative to 
solve these difficulties. Asynchronous Finite State Machines 
(AFSM) are widely used for the design of the control unit of 
asynchronous digital systems. A very popular machine is the 
extended burst-mode AFSM (XBM_AFSM), and one of the most 
important steps in the synthesis of these machines is the state 
minimization. This paper proposes a novel method for state 
minimization of XBM_AFSMs. Such machines are implemented 
in Huffman architecture (XBM_HMs). The proposed method 
performs a minimum coverage using genetic algorithm. The 
XBM_HMs present a better interaction with fast environments, 
reduce the cost of timing analysis and show a high potential for 
a better cycle time when compared to HM architecture with 
output feed-back, which is the target architecture of the 3D tool, 
the state of the art in synthesizing XBM_AFSMs. The proposed 
tool is tested for an extensive set of benchmarks showing high 
efficiency, obtaining an average reduction of 25% in the number 
of states. 
 
Index Terms— Asynchronous logic, genetic algorithm, AFSM. 
 
 

I.-INTRODUCTION 
 

The difficulties in designing complex synchronous digital 
systems, due to the global clock signal [1,2] and Deep-Sub-
Micron MOS technology [3], can be overcome with 
asynchronous circuits.  Asynchronous designs present 
potential advantages when compared to their synchronous 
counterparts, such as: no clock skew, no distribution of the 
clock, lower power consumption, larger modularization and 
more robustness against temperature variations and 
electromagnetic interactions [4]. On the other hand, its main 
disadvantage is the lack of tools for automatic synthesis [5,6].  

 
Asynchronous FSMs are important components of an 

asynchronous digital system, which may be composed by a 
network of FSMs + data-paths [6]. Many digital systems are 
composed by components like data-paths and controllers [5-
8]. Two traditional styles of specification have been proposed 
to describe asynchronous controllers for an optimized 
synthesis: Signal Transition Graph (STG) and Burst-Mode 
(BM). 
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      STG was proposed by Chu [9] and is a Petri-net 
description. The main strength of STG is the ability to 
describe concurrence between inputs and outputs (I/O 
concurrence) that occur in asynchronous systems. It naturally 
describes timing diagrams that are quite used on the 
interfaces design.  However, there are several descriptions in 
STG that cannot be implemented, because the description 
becomes very confusing when manipulating a large number 
of signals. Furthermore, this type of description may over-
grow in size, besides not being familiar to designers of the 
synchronous world. 
 

BM was proposed by Coates et al. [10], formalized by 
Nowick [11] and extended by Yun and Dill [12], as extended 
burst-mode (XBM). It is used to describe asynchronous finite 
state machines (AFSM) of Mealy type. The XBM 
specification is based on state diagram, being familiar to 
designers. She describes from synchronous FSMs of Moore 
type up to AFSMs of heterogeneous systems.  XBM_AFSMs 
operates as a class of MIC (multiple input change), called 
burst mode. These machines interact with the environment in 
generalized fundamental mode (GFM). In this mode, a new 
set of input signals (input burst) will be activated only if the 
machine is in a stable state, i.e. there is no activity on the 
gates and lines. The XBM_AFSMs obey to the bounded gate 
and wire delay model, and have been applied on important 
academics and industrials designs [13-17]. 

  
For the automatic synthesis of XBM AFSMs, the 3D 

method is well-known, as proposed by Yun and Dill [12]. 
This method implements the circuits as Huffman machines 
with output feed-back (HMFO – see Fig. 1). The HMFO 
architecture leads to smaller areas when compared to 
traditional Huffman machines (MH – see Fig. 2) because it 
uses the output signals as states signals, thus reducing the 
need for states signals. As the output signals are feed-back in 
HMFO architecture, there is a high potential to the output 
equations have a higher latency time when compared to 
traditional HMs, once these machines states are represented 
only by states signals [18]. 

 
The BM_HMs allows processing state transitions in one 

of the two machine cycles, which are: input burst→output 
burst concurrently with state signals; and input burst→state 
signals→output burst. Consequently, the HM architecture is 
the most suitable for interacting with fast environments, 
because HMFO architecture uses machine cycles that may 
violate the GFM. By violating the GFM, delay elements 
should be inserted, degrading the performance and reliability 
of AFSMs. 
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As the output signals tend to be fed back in the HMFO 
architecture, the 3D method uses the machine cycle, input 
burst→state variable→output burst, when interacting with 
fast environments. This machine cycle, besides causing a 
penalty in cycle time [18], does not guarantee a definitive 
solution for the violation of the GFM, because the output 
signals are fed back. 

Despite showing a potential for larger area, the HM 
architecture presents some interesting features, especially 
when interacting with fast environments. The XBM 
specification supports level sensitive signals (LSS) with non-
monotonic behavior, which lets you to interact with 
conventional functional units, synchronous processors and 
even heterogeneous systems. These different environments 
may have a common characteristic: they have a faster 
response time. 

 
This paper proposes a novel method for state 

minimization of Huffman machines that support the XBM 
specification (XBM_HMs). The proposed method uses 
modified classical algorithms to obtain the maximum 
compatibility classes and minimum coverage, which is 
performed by using genetic algorithm. Authors are unaware 
of the existence of any algorithm for minimizing states for 
XBM_HMs machines such this one. As the XBM 
specification incorporates the BM specification and 
Minimalist tool [19] synthesizes BM_HMs machines, it was 
possible to compare results of an extensive set of BM 
benchmarks, considering our method of states minimization 
and the method of states minimization proposed by Führer et 
al. [20], which is incorporated in the Minimalist tool. 
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Fig. 1. Huffman machine with feed-back output – HMFO. 
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Fig. 2. Huffman machine – HM. 
  

II.-EXTENDED BURST-MODE SPECIFICATION 
(XBM) 
 

     The BM specification is represented by a diagram of state 
transitions, where transitions can occur for single, or multiple 

input changes. It is necessary to define the initial state. Each 
state transition is represented by an arc in the diagram, and is 
labeled by a set of input signals and/or output signals. These 
sets are called input (output) bursts. The signals are always 
transition sensitive (0→1, or 1→0) and are called transition 
sensitive signals (TSS). Each input burst has to be no empty. 
If any change occurs in the inputs, the machine stays in the 
same state. The input burst are monotonic, changing only 
once during each state transition. The BM specification has to 
respect the polarity property, unique entry point, and the 
maximal set property.  
 
    The XBM specification inherits the same characteristics of 
the BM specification and adds up the level conditional 
signals and direct don’t-care signals. The level conditional 
signals allow describing in different ways two or more state 
transitions, depending on the level (0 or 1) of one or more 
input level conditional signals. The transition sensitive 
signals could be direct don’t-care, which describes 
concurrency between inputs and outputs. A level conditional 
signal (level sensitive signal – LSS) can switch freely if it is 
not labeled by a state transition (non-monotonic behavior). If 
it is, it has to meet the setup and hold time requirements. The 
direct don’t-care signals should have only one monotonic 
transition. Every state transition in XBM has a so-called 
compulsory signal, which in the previous transition was not a 
direct don’t-care signal (terminating signal).  
 

Fig. 3 illustrates a XBM specification that describes the 
SCSI_INIT-SEND (small computer systems interface) bus 
controller, as defined by the ANSI standard X3.131-1986, 
which is a physical and logical communication protocol 
between computers and peripheral devices (see Fig. 3 ). The 
SCSI benchmark contains 4 entries (Cntgt1, Fain, Ok, Rin), 2 
outputs (Aout, Frout) and an initial state 0. The description 
Rin+ Fain- / Aout+ in the transition 5→3 means that the 
output (Aout: 0 to 1) will be activated when the burst input is 
enabled (Rin: 0 to 1 AND Fain: 1 to 0). The LSS signal cntgt1 
is used to describe the mutual exclusion between transitions 
3→6 and 3→4. One example is the arc labeled with [ <cntgtl-
> rin- / aout-] that means if cntgtl=0 and the rin input 
changes from 1 to 0, the aout output will change from 1 to 0. 
The “directed don't-care” signal Rin*, in transition 4→5, 
means that Rin can change its value or remain in its previous 
value. In the state transition 2→3, the signal Fain is 
compulsory.  Yet other restrictions have to be met on the 
XBM specification [12]. 

 

<Cntgt1+>
Rin- / Aout- Frout+

0
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3
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6
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Ok+ Rin* /
Frout+

Fain+ Rin* /
Frout-

Ok- Rin* /

Rin+ Fain- /
Aout+

<Cntgt1->

Rin- / Aout-

Fain+ Rin* /

Frout-Rin+ Fain- /
Aout+

Fig. 3. XBM Specification: SCSI_INIT-SEND. 
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III.-XBM STATE CODING PROPERTY 
 
      The XBM specification describes FSMs of Mealy type. 
The FSMs of Mealy type will be implemented as Huffman 
machines (HM), where the states are solely identified by the 
state variables (see Fig. 2). 
 
     Definition 1: A finite state machine (FSM) is described 
by a 4-tuple <S,I,O,T>, where S is a finite set of states; I is a 
finite set of inputs; O is a finite set of outputs; T is a finite set 
of state transitions. A state transition is represented by two 
cubes (A, B), which denotes all legal path [A, B], where A is 
the cube of input and B is the cube of output  [11,21]. 
 
      A XBM specification is well-formed if it satisfies the 
properties of polarity, distinguishability constraint and unique 
entry condition, as proposed in [12]. The XBM specification, 
when implemented in the HM architecture, must satisfy the 
condition of the bridge state.  
 
Definition 2: Bridge state XBM (XBM_BS) says that a well-
formed XBM specification satisfies the XBM_BS condition 
if in all state transition coming out from a state decision with 
LSS signals, there is at least one bridge state inserted in each 
state transition generating a multicycling. 
 
      Figure 4 shows the XBM specification of the SCSI_INIT-
ISEND benchmark that presents the state decision 3 
involving the LSS Cntgt1 signal, where the states bridges 6' 
and 4' were introduced to satisfy definition 2. 
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Rin- /
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Aout+

4'6'
/ Aout- Frout+

 
Fig. 4. XBM specification: SCSI-INIT-ISEND with bridge states. 

 
IV.-STATE MINIMIZATION: XBM_HM 
 

 To perform the merging of states in the XBM_HMs we 
introduce a new definition for compatible states. The method 
of merging of states starts from the XBM specification, 
which satisfies the condition of bridge state (XBM_BS). 
 
Definition 3: Merging of states MS_XBM_BS. Be any two 
states Si and Sj of a XBM specification. It is said that Si and 
Sj can fuse, if Si and Sj are compatible states in XBM_BS.  
 
Definition 4: Compatible states XBM (CS_XBM). Be any two 
states Si and Sj of a XBM_BS specification. It is said that Si 
and Sj are compatible states if the value of the outputs they 
specifies are equal, if the next states, if specified, are 
compatible, Si and Sj are not bridge states and do not violate 
the requirements of logic cover [22].  
 

      The proposed method of state minimization of XBM 
Huffman machines consists of four steps: 
 
1. Insert bridge states in the XBM specification and obtain 

XBM_BS.   
2. Generate the table of pairs of compatible states XBM 

(XBM_Table), using definition 4 [23]. 
3. From the XBM_Table, generate the classes of states of 

maximal compatibility (CSMC_XBM) [23]. 
4. From XBM_Table and CSMC_XBM perform the 

minimum coverage, using genetic algorithm [24]. The 
minimum coverage obtains the lowest number of 
CSMC_XBM that covers all states of XBM_BS and 
satisfies the property closing. 

     The algorithm in Fig. 5, of XBM-SPEC, creates the merge 
table and generates a set of maximal compatibility class. The 
minimum covering is performed by a genetic algorithm  

 

 
Fig. 5. State minimization for XBM_HMs: procedure. 

 
A. XBM_Table 

 
      Illustrating the step of states minimization, we use the 
XBM specification of Fig. 4 as table of flow in Fig. 6. The 
first step generates the table of pairs for compatible states, 
where "V" and "X" shows the compatible and non-
compatible states respectively (see Fig. 7).  

Fain Ok Rin

Scsi-init-send-specification

S0, 00 S0, 00 S1, 01 S1, 01

S1, 01 S1, 01 S2, 00 S2, 00

S3, 10 S2, 00 S2, 00 S2, 00

S3, 10 S6', 10

S1, 01 S1, 00 S0, 00 S0, 00

S2, 00 S2, 00 S1, 01 S1, 01

S2, 00 S2, 00 S2, 00 S3, 10

S4', 10 S3, 10
S4, 01 S4, 01 S5, 00 S5, 00

S3, 10 S5, 00 S5, 00 S5, 00

S0, 00 S0, 00 S6, 00 S6, 00

S5, 00 S5, 00 S4, 01 S4, 01

S5, 00 S5, 00 S5, 00 S3, 10

S6, 00 S6, 00 S0, 00 S0, 00

0
1
2
3
4
4
6

Cntgt1=0 Cntgt1=1
000 001 011 010 110 111 101 100 100 101 111 110 010 011 001 000

S6, 00

S4, 01

S6, 00

S4, 01

S6'
S4'

 
Fig. 6. Table of flow of the SCSI-INIT-ISEND.  
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Fig. 7. SCSI-INIT-ISEND: a) XBM_Table; b) graph of dependency.  
 
 

B. CSMC_XBM 
 
      The second step generates the classes of maximum 
compatibility, shown in Fig. 8 and the classes {3},{6} and 
the classes (bridge states) {4’} and {6’}. 
 

5 {2, 5}

Compatible Máximal compatibilityState
2

4 {2, 5};  {1, 4}1

1,4 {2, 5};  {0, 1, 4};0

set of maximal compatibles
 

 
 

Fig. 8. Set of classes of maximal compatibles of the SCSI-INIT-ISEND.  
 
 

C. Minimum coverage based in genetic algorithm 
 
       The algorithm 1 (see Fig. 5) is a technique for 
optimization and stochastic search, called Genetic Algorithm 
(GA), being applied in the step of minimum coverage [24]. In 
the step of state minimization, the step of minimum coverage 
is a problem of unate coverage [20] that is, to obtain the 
smaller number of classes of maximal compatibility, covering 
all states.  Due to the possibility of enumerating the classes of 
maximal compatibility, the encoding used on the 
chromosome is an entire coding, a vector of integers. From 
the listed classes, it is one way to represent a possible 
solution. The chromosome 𝐶𝐶0 , in Fig. 9 is a sub-set of the 
classes, using the entire coding. 
 
C1. Evaluation 
 

The states minimization for XBM_HMs, in case the 
problem of minimum coverage, the equation (1) shows the 
Fitness function, where "Sc" is the number of states covered. 
The Fitness is responsible for classifying a population of 
individuals aiming to find the smallest set of classes of 
maximal compatible Fitness=K, where K ≤ N, and N is the 
number of CSMC and K is the smallest set of CSMC that 
cover all states of XBM_BS. 

 
Fitness = ∑ Sc          (1) 

 

C2. Selection 
 

The selection is performed in groups of 15 individuals 
where the best ones are compared “two by two” and the 
algorithm chooses the two “most suitable” chromosomes for 
the crossover. The same 15 individuals continue to be 
considered for the next generation processes, once it is 
desirable to keep the best features of these “most adapted” 
chromosomes improving the next generations.  
 
C3. Crossover 
 

This step is based on the “crossover operator”, which is 
related to a relative occurrence rate and shows a rate above 
60%. Its main goal is to provide a greater diversity of codes 
for dichotomy equal to zero. It is responsible for generating 
new offsprings from this population. Individuals are 
classified as they better satisfy condition 1.  Fig. 9 illustrates 
the effects of crossover and mutation operators in a 
chromosome of four classes. As shown in Fig. 9, the pairs are 
selected among the best chromosomes: C1 and C2 generate a 
new individual that is C3. 

 
C4. Mutation 
 

“Mutation operator” is related to a relative occurrence 
rate. Due to the application of crossover operator, after some 
interactions, the population tends to become very 
homogeneous. To prevent that and further explore the search 
space, the mutation operator changes the value of some 
chromosomes as shown in Fig. 9, where one bit of 
chromosome "𝐶𝐶3" has its value changed from 1 to 0. 
 

Chromossome Crossover Mutation 
 

[ 3 2 0 1 ] : 𝐶𝐶0 
        

[ 3 2 0 1 ] : 𝐶𝐶1 
[ 4 5 0 6 ] : 𝐶𝐶2 
[ 4 5 0 1 ] : 𝐶𝐶3 
[ 3 2 0 6 ] : 𝐶𝐶4 

 
[ 3 2 0 6 ] : 𝐶𝐶3 
[ 3 2 1 6 ] : 𝐶𝐶3′  
 

Fig. 9. Representation of chromossome. 
 
     The evolutionary process, starts from a randomly 
generated population P_0 of chromosomes and a value of k 
classes equal to 1.  For 500 generations, the population is 
subjected to the evolutionary process: objective function, 
selection, crossover and mutation (Fig. 4).  If it finds a 
solution, the algorithm returns; otherwise k is incremented 
and the chromosome size increases in a position and the 
process restarts.  
     After the coverage is performed, the states of the 
specification SCSI-INIT-ISEND were reduced from 7 to 6 
(see Fig. 10), two classes were used from Fig. 8, in addition 
to the class {S3},{S6}, {S4’} and {S6’} that not are 
compatible with any other class, and were inserted in the final 
solution.  

 S0' = {0, 1, 4}
 S1' = {2, 5}
 S2' = {3}
 S3' = {6}
 S4' = {S4'}
 S5' = {S6'}

 
Fig. 10. Coverage unate: SCSI-INIT-ISEND.  
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V.-EXPERIMENTAL RESULTS 
 

The proposed method of states minimization was 
implemented in C language and incorporated in the SAGAAs 
(State Assignment Genetic Algorithm Asynchronous) tool 
[25]. It was tested in 44 benchmarks of asynchronous 
paradigm, where 14 are XBM and other 30 are BM. The 
compared tool is the Minimalist [19] which is considered the 
state of the art, but only accepts BM. For the XBM 
specification, implemented as Huffman machine (XBM_HM), 
does not exist in the literature a tool that synthesizes the 
XBM_HM machines. Also, is not possible any kind of 
comparisons, due to the need of inserting bridge states when 
there are LSS signals, we evaluated the ability of our method 
of minimization. All benchmarks were synthesized in HM 
architecture.  

 
Table I shows XBM specifications, where in/out/st/tran 

mean respectively the numbers of input signals, output 
signals, states and state transitions. Table 1 also shows, the 
states minimization of the XBM specification objectifying to 
HM architecture. For SAGAAs tool, the results St/T which 
mean respectively: final number of states and time of 
processing. The SAGAAs tool obtained an average reduction 
of states of 25%.  

 
 

TABLE I RESULTS: NUMBER OF STATES IN XBM 

Benchmark
Specification
In  Out  St  Tr

#Sagaas
St      tempo(s)

ack-xbm1 4/5/8/10 6 1.11
ates-xbm 5/3/15/21 9 1.67
biu-dma2fifo 4/2/7/9 8 0.01
chu-133-2 3/3/4/4 3 0.01
ex02 4/2/10/15 9 1.40
ex-des 5/7/7/8 5 0.86
ex-sad 5/11/11/15 11 1.02
ex-speak 4/3/8/10 6 0.91
ex-tese_yun 3/2/4/4 2 0.23
fifo-cell-ctrl 2/2/3/3 3 0.02
hp-ex01 5/5/7/7 2 0.35
sbuf-sct 3/3/8/9 4 0.52
yun-diffeq-mul1 3/3/4/4 3 0.04
yun-diffeq-mul2 3/3/3/3 3 0.02  

 
Table II shows BM specification where in/ Out /St/ Tr 

mean respectively the numbers of input signals, output 
signals, states and state transitions.  

 
Table II also shows for Minimalist and SAGAAs tools the 

results St/T, which mean respectively: final number of states 
and time of processing. The SAGAAs tool compared to 
Minimalist obtained an average reduction of states of 1% and 
average reduction of time of processing of 98% The 
Minimalist tool failed to minimize the benchmark counter-bin. 

 

 
TABLE II RESULTS: NUMBER OF STATES IN BM  

 

 

Benchmark
Specification
In  Out  St  Tr

#Minimalist
St      T(s)

#Sagaas
St     T(s)

alloc-outbound 4    3      8     9 5      0.26 5       0.21
call-proc 3    3      12  16 2      0.41 2       0.31
concur-mixer 3    3      5     6 3      0.25 3       0.12
counter 2    9      17   17 16    13,471 16     8,729
counter-bin 1    5      32   32 --      --.-- 32     93,352
dme-e 3    3      8     10 3      0.40 3       0.19
dme-fast-e 3    3      8     10 5      0.45 4       0.29
hp-ir-sc-ctrl 13 14     33  42 13    51,10 13    65,625
isend 4    3      9    11 6      0.35 5       0.27
isend-bm 5    4      10  12 4      0.38 4       0.23
isend-csm 5    4      8     9 3      0.47 3       0.18
it-control 5    7      10  12 4      0.38 5       0.66
mp-f-p 3    4      4     4 2      0.23 2       0.14
nak-pa 4    5      6     6 2      0.27 2       0.16
nowick 3    2      6     6 2      0.58 2       0.15
opt-token-dist 4    4      12   12 6      0.40 6       0.68
pe-send-ifc 5    3      11   14 5      0.47 5       0.83
pscsi 10  5      45   62 10    --.--  9      58,178
pscsi-tesend-bm 4    4      10  12 6      0.48 6      1,191
ptrcvb1 4    4      7     9 4      0.35 4       0.25
qr42 2    3      4     4 3      0.27 3       0.15
re-setup 3    2      6     7 2      0.42 3       0.31
ring-counter 1    2      8     8 8      0.35 8       6,708
sbuf-sct 3    3      8     9 4      0.39 4       0.43
scsi-tsend-bm 5    4      11   13 5      0.86 5       0.55
sdcont2 8    12    27   32 13    11,554,329 13    17,156
stetson-p2 8    12    25   28 13   95,368 13    8,603
stetson-p3 4    2      8    11 3     0.33 3      0.21
strcv-bm 5    4      10   12 4     0.67 4      0.54
yun-diffeq-alu1 3    5      7     9 5     0.37 5      0.18

total 161  11,662,668 160  149,671
 

 
VI. CONCLUSION 

 
In this paper a novel method for state minimization for 

the XBM_AFSM was presented, which is based on genetic 
algorithm. The XBM_AFSMs were implemented in HM 
architecture, which potentially presents a better latency time 
and better interacts with fast environments, when compared 
to the HMFO architecture. This paper also introduced the 
concept of bridge state, which solves the problem of logical 
hazard associated with the LSS signals with non-monotonic 
behavior. As future work it is foreseen to finish the SAGAAs 
tool for logic synthesis of XBM_HM machines. For this we 
will develop algorithms for steps of state assignment and 
logic minimization.  
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