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Abstract— Acquisition is a crucial process in GNSS systems
as it determines which satellites are visible, a course estimation
of the Doppler shift and an initial estimation of the time delay
between the transmitter and the receiver. Commonly, acquisition
is performed by serial search or by circular correlation search.
Both processes, although very understood and deployed in
practical systems are very time and computational consuming.
In this work it is shown that acquisition process is intimately
related to the compressive sensing framework, enabling under-
sampling of the received signal yet keeping recovery guarantees.
Simulation results presented points towards a new and interesting
direction in which the GNSS acquisition can be performed using
sampling rates far below the Shannon-Nyquist limits, leading to
simplification of hardware and software.
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I. INTRODUCTION

The GNSS (Global Navigation Satellite System) is a generic
term for the several satellite navigation systems. That system
allows small antennas to receive the signal sent continuously
by multiples satellites with the goal of determining the receiver
position, velocity, and journey time in the Earth [1]. There
are several operational systems today, being the two most
known the GPS (Global Positioning System), developed by
the North American government, and the Russian GLONASS
(GLObal’naya NAvigatsionnaya Sputnikovaya Sistema). Ad-
ditionally, there is the European Galileo and the two regi-
onally accessed: the Chinese Beidou and the Indian IRNSS
(Indian Regional Navigation Satellite System). Although this
work uses the signals models from the GPS to perform the
acquisition algorithms presented, the same methodology can
be easily adapted to work with the signals models of the others
systems.

The GPS system has three segments: 1) the space segment,
which consists of a nominal constellation of 31 satellites,
distributed in six orbital planes; 2) the control segment, com-
posed of a ground station network responsible for monitoring
the satellite transmission, analyzing the receiver perform, and
sending commands and data to the constellation; and 3) the
user segment, that is mainly composed of receivers, processors,
and antennas which receive and treat the L-band signals sent
by the GPS satellite constellation [2].

The purpose of a receiver is to determine its own position
(latitude, longitude e altitude) at a given moment, based on

Adilson Chinatto, chinatto@espectro-eng.com.br.; Naiallen Carolyne Ro-
drigues Lima Carvalho, naiallen@yahoo.com.br; Cynthia Junqueira, cyjun-
queira@uol.com.br The authors would like to thank to CNPq for their support
and assistance with this project GPS de Alta Dinâmica, No. 472419/2014-5.

GNSS signals. To achieve this, a sequence of operations
must be done before that the GNSS receiver could propose a
navigation solution. Hence, the first receiver task is to identify
the visible satellites, which is performed by the GPS signal
acquisition process [3].

The GNSS signal acquisition process consists in a search
in time (code phase), a search in frequency (Doppler shift)
and a search in PRN (Pseudorandom Noise) codes (satellite
identification). This process has three main objectives, namely
to detect the presence of visible satellites, to determine the
delay of the PRN code and to estimate the Doppler shift. There
is a large amount of literature on PRN code acquisition, the
most known algorithms are detectors in the time domain, but
also there are the frequency domain search techniques [4]. In
this paper we discuss a comparison between the serial search
and circular correlation search algorithms.

Acquisition algorithms have been studied for several years
and some approaches as the serial search and circular corre-
lation search have attracted much attention in order to lead
to efficient and quick solutions. Although consolidated, those
algorithms are known as time and computational demanding.
Wherefore, in this work, we also present a new possibility to
deal with the acquisition process, aiming to reduce its compu-
tational complexity and, so, enabling the adoption of simpler
hardware and software structures in its implementation. This
potential new approach is called sparse acquisition process.

The paper is organized as follows: in section II, the basics of
GPS signal is introduced; Section III brings the mathematical
concepts in the acquisition process, recalling the traditional
approaches to that, and introducing a new possibility in
acquisition based on the compressive sensing theory; Section
IV deals with the computational complexity of the acquisitions
schemes; in Section V, some simulation results are presented,
paving the way to the new approach adoption; finally, Section
VI brings conclusions and future work possibilities.

II. GPS SIGNAL

The signals generated by the GPS satellite constellation are
transmitted at two L-band carrier waves, called L1 and L2,
which are generated from a base frequency f0 = 10.23 MHz
[5]. Mainly, the signal transmitted by a GPS satellite can be
divided in three components: 1) Navigation data, which are
binary messages containing the Ephemerides, used to calculate
the position of the satellite in orbit, and the Almanac, which
contains information about all constellation; 2) PRNs, which
are random sequences of unique codes for each satellite, used
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to spread the navigation data spectrum; and 3) the Carrier
Frequency[4].

There are two types of GPS signal based on the type of PRN
used. The C/A (Coarse/Acquisition code) is available to the
general public and is used in the commercial GPS receivers
since the PRN of each satellite is known. On the other hand,
the P (Y ) (Precision code) is reserved for military use and the
PRNs are stealthy. Therefore, in this work, we used the C/A
code to perform the signal acquisition.

Each GPS satellite broadcasts its navigation data at a rate
of 50 bps (bits per second). These data are spread with a
pseudo-random code that has 1023 chips of length, running
at 1.023 MHz (called chipping rate). This means that at every
20 ms a data bit is spread by 20 packets of 1023 C/A code
chips [6]. This technique, called Spread Spectrum, is used to
increase the bandwidth, allowing the navigation data to be
recovered below the noise floor at the receiver by application
of the same PRN [4]. Additionally, this allows the GPS
satellites to share the same carrier since each one broadcast
the information spread by a specific PRN code.

III. GPS SIGNAL ACQUISITION

The purpose of the GPS signal acquisition process is de-
termining which satellites are visible at a given moment (τ )
and provide a coarse estimation of the frequency and PRN
code chip shift at the receiver. Frequency shifts are caused
by Doppler effect and by imprecisions in the receiver local
oscillator. PRN code chip shift is caused by the time difference
between the instant when the code is generated at the satellite
and the instant when it is received.

The acquisition process is done by correlating the received
signal (s) with a PRN signal (c). The correlation process
is a measure of similarity between signals and can be clas-
sified into two types: cross-correlation, the measurement of
similarity between distinct signals, and auto-correlation, the
measurement of similarity between a received signal and its
replica. In this work, the signal used as the replica is the C/A
PRN code, since it is the code available for civil purposes. It’s
important to say that the correlation requires that the chips of
the C/A codes, which is a binary sequences of 0 and 1, are
transformed into code states (+1 e -1) [1].

There are currently 31 operational satellites in the GPS
constellation [2], and each one has its own PRN sequence.
Therefore, the acquisition process correlates the received sig-
nal with each one of the 31 available codes. However, only
the correlation is not sufficient to find the visible satellites
since there are many sources of errors that can produce
inaccuracies, as the receiver noise, interference, multipath and
the ionospheric refraction [7]. Also there is the influence of the
Doppler effect and the time shift. The Doppler effect occurs
due to the motion of the satellites, the motion of the receivers,
and the Earth rotation. The typical Doppler interval, when the
receiver is at rest, is ±5 kHz. When the receiver is in motion,
the deviation due to this motion must be added to the deviation
caused by the motion of the satellites and the Earth rotation.
In such case, the maximum interval is ±10 kHz [6]. On the
other hand, the time shift is caused by the delay of the signal

propagation between the satellites and the receiver. This effect
may cause changes in the structure, size, and rate of the signal
[4].

Therefore, in the acquisition process is necessary to look
for a correlation magnitude that shows the code chip shift and
frequency shift. That means that the algorithm must search
for the Doppler shift in a search window of 20 kHz and for
the code delay in 1023.fs/fC/A possibilities, where fs is the
frequency sampling at the receiver and fC/A = 1023MHz
is the frequency of the code chip. This search is necessary
because the GPS signal is spread spectrally and can only be
detected if it is unassembled by its replica, which has to be
precisely aligned with the received signal.

Beyond that, in order to handle the GPS signal by software,
it is usually indicated sampling the signal following the
Shannon-Nyquist’s limits[8]. According to this theorem, the
sampling frequency fs must be at least twice the frequency of
the C/A code. However as it is desired a higher accuracy,
the sampling frequency considered in this work is fs =
8.192MHz.

Thus, considering that the frequency shift range is 20MHz
and that the search algorithm uses a step size of 500Hz called
bin, for each one of those bins will be performed a correlation
between the received signal (already sampled by fs) and the
C/A code of each satellite. In such a manner that, for each
satellite, those correlations will form a search matrix for the
GPS signal sized by 8192 × 41 cells, as shown in Fig. 1, in
which the search cell with the highest peak value indicates the
frequency offset and the signal delay.

Fig. 1 - Two-dimensional matrix of search acquisition

Since the GPS signal was sampled, the algorithm to search
the Doppler and time shift will be performed as in Fig. 2.
The input signal s is correlated with a replica of the C/A
code sampled at frequency fs. The methodologies of signal
acquisition presented here will differ only in the block called
matched filter. The correlation will occur for each frequency
bin and for each satellite until finding which satellites are
visible. In the following subsections, two classical search
algorithms are presented, one in the time domain and the
second in the frequency domain. Additionally, an alternative
acquisition methodology, based in sparse processing, is also
presented.
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Fig. 2 - GPS signal acquisition general algorithm

A. Serial Search Acquisition Process

The serial search is the simplest algorithm used to GPS
signal acquisition. This algorithm is based on non-coherent
correlations, and consist of multiplications and sums between
the received signal and the known PRN codes. Considering
that the received signal is s and the C/A code replica is called
ci, where i indicates the ith satellite, the product between s
and ci is multiplied by the apparent frequency (f(C/A) plus
the Doppler shift), generating a signal in phase (I) and in
quadrature (Q). The signals I and Q are integrated over every
1 ms and accumulated for N periods to finally be squared
summed [5]. The Fig. 3 shows the block diagram of the GPS
acquisition serial search algorithm, where j is the index of a
new block of data, L is the length of the vectors and k is the
quantities of correlation that will be performed for a same bin.

Fig. 3 - Non-coherent correlation in time domain

The output of the matched filter is the result of the corre-
lation between the received signal and the C/A codes of each
satellite. If the maximum value found in the search matrix
is the higher off all search matrix, the respective satellite
is considered to be visible. The correlation for GPS signal
acquisition can be represented by [9]:

R2[m] =

K−1∑
j=0

((j+1)NL−1∑
n=jNL

s[n].C[n]. cos(ωn)

2

+

(j+1)NL−1∑
n=jNL

s[n].C[n]. sin(ωn)

2) (1)

B. Circular Correlation Acquisition Process

Unlike the serial search, which seeks for a correlation
peak sequentially in two dimensions, combining phase and

frequency [10], to execute the correlation in the frequency
domain the receiver stores a complete data sequence in order
to translate it into the frequency domain via the Fourier
transform. The vector corresponding to the C/A code used
as replica must has the same length of received sequence.
The replica is multiplied by the exponential eωt in order to
seek for the correlation peak in a determined frequency bin,
and is also converted to the frequency domain. With both
signals in the frequency domain, the correlation is achieved
by multiplication of the sequences followed by the inverse
of the Fourier transform. This scheme is known as circular
correlation through FFT (Fast Fourier Transform) and is given
by

R[m] = abs(F−1(F(~s[n]).F(Ci[N
∗]))), (2)

where F corresponds to a discrete Fourier transform, F−1 is
the inverse discrete Fourier transform, ∗ corresponds to the
complex conjugation, and abs(.) is the operator that extracts
the absolute value.

In the Fig. 4 is shown the correlation scheme in the
frequency domain.

Fig. 4 - Circular correlation in frequency domain

C. Sparse Acquisition Process

As shown in (2), the correlation in frequency domain for
a determined frequency bin can be performed as a product
of F(~s[n]) and F(Ci[n

∗]), where n ∈ 1, ..., N . The circular
correlation can be represented in matrix form as:

θ
(k)
i = FH(CF~sk) (3)

where C is a matrix composed by zeros and whose main
diagonal is formed by the elements of F(Ci[N

∗]), ~sk is a
vector composed with samples of ~s concerning the frame k,
an F is a matrix N ×N corresponding to the DFT operator.

If the frequency bin considered in (3) is approximately
correspondent to the Doppler shift and the code used is present
in the visible satellites, then θ

(k)
i will present only one large

amplitude tap and several low amplitude taps. In other words,
θ
(k)
i can be considered sparse and original signal can be written

as
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~sk = Aθ(k)i + r (4)

where r is a Gaussian white noise vector and the system matrix
A is done by

A = FH(C−1F). (5)

The matrix A is a N × N square matrix whose columns
are formed by the vector ~Ci rotated of m samples, m ∈
0, 1, ..., N − 1, the rotation corresponding to the mth column
of A. Thus, each row of the matrix A is the vector ~Ci with
one position offset relative to the previous one row. This
configuration indicates that the scalar product between any
two different columns of A produces a result close to zero.
In other words, A can be considered to present low mutual
coherence and this fact, allied to θ(k)i be highly sparse, allows
the introduction of the concepts of compressive sensing for
the determination of the chip offset between the received data
and the C/A code [11]. Thereby the non-zero term of θ(k)i

indicates the chip offset, and θ(k)i can be obtained:

~θ
(k)
i = max AH .

K−1∑
k=0

~sk. (6)

Although (6) was exactly the serial search, it can be
performed using sub-sampling, based on the compressive
sensing framework. This is an indication that the problem can
be solved from undersampled sequences and using simpler
techniques as the well-known matching pursuit (MP) [12] or
orthogonal matching pursuit (OMP) [13] algorithms.

IV. COMPUTATIONAL COMPLEXITY

The sample frequency considered in this work is 8.192 MHz,
resulting in 8192 samples at each 1 ms. In addition, the
frequency range for searching for the Doppler was considered
to be ±20 kHz, divided in steps of 500 Hz. This results in a
search matrix of size 41× 8192. As showed in the Fig. 2, the
algorithm is a sequence of nested FOR loops, where the first
one indicates the search for the satellites, repeated 31 times.
The second loop is related to frequency search, executed 41
times, and the third one is related to the displacement of the
chips codes.

In the serial acquisition approach, considering that a whole
navigation data bit is used in the process, the number of
samples per acquisition process will be N = 1× 20× 1023×
8192 = 167608320. In this case, the computational complexity
is Op = N × 8192 × 41 real multiplications and the same
number of real additions, 8192 for each row in the matrix of
search and 41 for each column in the matrix of search. In the
end, the serial search algorithm, for all 31 satellite, will have
executed 3×Op×31 complex operations (multiplications and
additions). In conclusion, this algorithm is quite exhaustive
and timing consuming.

Considering the same scenario for acquisition in the fre-
quency domain, it will be acquired 20 packets of 8192 samples
of the received signal. If the FFT is performed using the Split-
Radix algorithm [14], we would have the following tasks for
1 packet (i. e., n = 8192):

• The C/A code must be complex conjugated and multi-
plied by eiωt. In this case 8192 multiplications should be
made, which would give us 8192 real multiplications per
cosine and 8192 real multiplications per sine, or (n+n);

• Perform the complex Fourier transform, using the Split-
Radix algorithm for 8192 samples of ~s. The complex
Split-Radix algorithm has complexity Mc = 2n(n−3)+4
for real multiplications, where m is given by 2m = n, in
our case m = 13. The complexity for real additions of
this algorithm is Ac = 3.2n(n− 1) + 4 [15].

• Perform a real Fourier transform for the C/A code,
using the Split-Radix. The real Split-Radix algorithm
has complexity Mr = 2(m−1)(m − 3) + 2 for real
multiplications and Ar = (3n − 5) × 2(n−1) for real
additions [15].

• After all those operations, we must to apply the inverse
complex Fourier transform, also using the Split-Radix
algorithm.

Thus, for all satellite, using the algorithm in frequency
domain will be executed 31×41×20×(2Mc+2Ac+Mr+Ar+
n+n) operations. For comparison, the serial algorithm have to
performed approximately 164 Tera operations of multiplication
and addition for processing 1 data navigation bit. Whereas
using the correlation in the frequency domain this number
drops to 0.8 Giga operations of multiplications and additions
to process the same amount of data.

Now, using the sparse approach, the sample frequency will
be the same as fCA, the evaluation of (6) demands N2

multiplications and N(N − 1) +KN sums. In the following
section is presented a comparison between the results of the
acquisitions schemes for one satellite.

V. SIMULATION RESULTS

This section presents the results of classical acquisition
algorithms (serial search and circular correlation search) and
the new proposed methodology, based on sparse processing.
In the classical approach, the sampling frequency obeys the
Shannon-Nyquist criterion and in this work the sampling
frequency used is fs = 8MHz. However, in the sparse
processing approach, the system is undersampled, allowing
utilization of fewer computational resources, in this case, the
sampling frequency used is equal to the C/A code frequency, i.
e. fs = f(C/A) = 1.023MHz. All algorithms were developed
in Matlab and were also implemented in C#. For the sake
of clarity, all the simulations consider navigation data from
satellite 1.

The first tests of algorithms are shows in Fig. 5 that presents
the result of the serial search process acquisition, Fig. 6 that
presents the acquisition of the circular correlation process, and
Fig. 7, that shows the result of a acquisition using the sparse
approach. The first two results uses the sampling frequency
fs = 8MHz and the third one uses the sampling frequency
fs = f(C/A) = 1.023MHz and considers a sub-sampling by
factor 2. For all process the Doppler shift was kept in 0Hz
and the result of algorithms found the same results for Doppler
and code shift, although magnitude peak is higher in the serial
search, while the resultant noise, in this case, is lower. Even
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though the sparse approach be quite noisy it also found the
Doppler and code shift.

Fig. 5 - Auto-correlation results using serial search.

Fig. 6 - Auto-correlation results using circular correlation search.

Fig. 7 - Auto-correlation results using the sparse approach.

In the next set of simulations the serial search and circular
correlation search were performed considering the sampling
frequency fs below to the Shannon-Nyquist criteria and equal
to fC/A. The Doppler shift used to the tests was varied
from 0 Hz to 200 Hz and the samples equivalent to one
whole navigation data bit were used in for the correlation
peak determination. A total of 100 Monte-Carlo runs were
employed to the mean error calculation. Finally, for the sparse
acquisition evaluation were considered sampling frequencies
of fC/A divided by 2, 4, 8, and 16. In Fig.8 is shown the
evaluation of errors in terms of code shift identification for
each one of algorithms considering the increase of the Doppler
shift. As expected, the higher the frequency division factor,
faster the accumulation of error in the identification of the
code shift.

In the Fig. 9, the first result is the serial acquisition with
sample frequency of 1.023 MHz and the second is the acqui-
sition in frequency domain with the same sampling frequency.

Fig. 8 - Graphics of code shift errors

The third one was the sparse acquisition approach results,
considering sub-sampling by factor 2. The next results also
uses the sparse approach, but undersampling the received
signal by factors four, eight and sixteen positions in the vector
of the received signal. It is important to note that even in the
undersampling scenarios, the sparse approach brings low error
for Doppler as high as 80 Hz. This is an indication that the
sparse approach can be used if the frequency bins comprise
thinner bandwidths.

Besides, the execution time for the acquisition algorithms
for all 31 satellites, considering a sampling frequency equal
to the C/A frequency, i. e. fs = fC/A = 1.023MHz, is
compered and shown in Fig. 10. The serial search algorithm,
although giving a better result, took approximately 78 seconds
to perform the acquisition, the acquisition in frequency domain
took about 14 seconds. The sparse approach took 12 seconds,
5 seconds, 3 seconds, 1.5 seconds and 0.66 second to perform
sparse acquisition jumping one, two, four, eight and sixteen
positions in the vector of the received signal. These results
show that the sparse processing has potential in save compu-
tational resources.

Fig. 10 - Comparison of execution time between all algorithms

VI. CONCLUSIONS AND FUTURE WORK

In this work, a recall in acquisition algorithms for GNSS
was performed, considering the classical techniques based in
serial search and circular correlation search. These techniques
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Fig. 9 - Doppler shift 0Hz

were compared in terms of performance and computational
performance. The literature claims that the acquisition process
based on circular correlation search is faster and computational
less intensive than the serial search approach. These claims are
validated by the simulation results presented in this work.

On the other hand, a new approach for acquisition, ba-
sed on the concepts of compressive sensing, is presented.
Via algebraic manipulations, it is possible to state that the
GNSS acquisition problem can be stated as a sparse recovery
problem, benefiting by all the advantages assured by the
sparse optimization. This assumption can pave the way to

development of a new, faster and less intensive computing
acquisition algorithms. Simulation results presented in this
work attest this characteristic and highlight the potential of
the new technique.

As an orientation to future works, the compressive sensing
applied to the GNSS acquisition problem can be mathe-
matically stated and simulations considering more realistic
scenarios should be performed. The use of specific algorithms
for Doppler and chip shifts joint-optimization is an area that
can lead to an important harvest of new and more efficient
methodologies in GNSS acquisition procedures.
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