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Abstract— The Gershgorin radii and centers ratio (GRCR)
and the Gini index detector (GID) test statistics have been
recently proposed as, blind, simple and robust solutions for
centralized cooperative spectrum sensing under non-uniform
and dynamical received signal and noise powers. In this paper,
an hybridization of these test statistics is proposed, which is
named hybrid GRCR-GID (HGG). It is demonstrated that the
HGG harvests the advantages of the base detectors, attaining
approximately the same performance of the GRCR in the
absence of a dominant propagation path, and a little inferior
performance with respect to the GID in the presence of dominant
path. Moreover, the HGG is capable of outperforming the
GRCR and the GID in some system configurations, maintaining
robustness, low computational complexity, and the constant false
alarm rate property.

Keywords— Cognitive radio, GID, GRCR, HGG, jamming
detection, spectrum sensing.

I. INTRODUCTION

We are witnessing an unprecedented growth of telecommu-
nication services, especially with regard to wireless commu-
nication systems. As a consequence, the radio-frequency (RF)
spectrum has become an increasingly congested or even scarce
communication resource in certain bands and regions, mainly
due to the adoption of an spectrum allocation policy that
assigns to primary systems, in a fixed fashion, the frequency
portion associated to each service. The problem tends to
worsen with the massification of the Internet of Things (IoT)
and the deployment of the fifth generation (5G) of wireless
communication networks, mainly due to the expected huge
amount of terminals and the demand for higher bandwidths.

The concept of cognitive radio (CR) has emerged as a
promising solution to the above problem [1], [2], accounting
for the time-space-varying nature of the occupation state of
certain frequency bands. It can take advantage of a dyna-
mic spectrum access policy in which idle frequency bands
due to underutilization can be opportunistically occupied by
cognitive secondary user (SU) terminals. For this to occur,
cognitive radios need to detect the presence of the primary
user (PU) signals in the band of interest, a process called
spectrum sensing [3], [4]. Moreover, the cognitive radios need
to be agile enough to jump to the free band as soon as it is
detected vacant, quickly moving out if the band is accessed
again by any PU terminal.

The spectrum sensing capability is crucial not only to the
dynamic spectrum access approach. In military communicati-
ons, the presence of intentional (jamming) and unintentional
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interference can be detected to drive frequency hopping ope-
ration or other countermeasure, aiming to maintain the desired
level of communication quality and attain low probability of
interception (LPI).

Spectrum sensing can be performed independently by each
cognitive radio, or can resort to cooperation aiming at better
performances. The former is subjected to problems that reduce
the detection power, like multipath fading, shadowing and
hidden terminals [3]. Cooperation improves the accuracy of
the decisions on the occupation state of the sensed band
compared to the non-cooperative sensing, owed to the spatial
diversity promoted by the different geographic positions of
the radios in cooperation.

In centralized cooperative sensing with data fusion, which is
the focus of the present work, samples of the sensed signal, or
quantities derived therefrom are transmitted to a fusion center
(FC), where the final or global decision is made. This decision
is then informed to the cognitive radios, who will compete for
the band, if it is unoccupied, by means of some appropriate
multiple access technique.

The metrics often used to assess the spectrum sensing
performance are the probability of detection, Pd, and the
probability of false alarm, Pfa. The former is the probability of
deciding in favor of an occupied band, given that it is really
occupied. The later is the probability of deciding in favor
of an occupied band, given that it is in fact vacant. A high
value of Pd is desired to reduce the interference caused by
the secondary network to the primary network due to missed
detections. On the other hand, a low value of Pfa is aimed
at, so that more opportunistic transmissions can be made by
the secondary network due to bands that are less frequently
declared occupied when they are actually vacant.

A. Related research

The Gershgorin radii and centers ratio (GRCR) [5] and Gini
index detector) (GID) [6] were recently proposed as solutions
for centralized cooperative spectrum sensing with data fusion.
In addition to having low computational complexity, they
are robust against variations in the received signal and noise
powers, they do not need knowledge about the characteristics
of the sensed signal and about the noise power, meaning
that they are completely blind detectors, and they have the
property of constant false alarm rate (CFAR). Moreover, they
are capable of outperforming most of the blind detectors
available in the literature in a wide range of situations.

The GID has as its main characteristic the high perfor-
mance when the sensed signal has a dominant propagation
path component, either line-of-sight or specular. However, its
performance is drastically affected in the absence of such
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dominant path. The GRCR has no outstanding performance
in the dominant path situation, but significantly outperforms
the GID when path dominance does not exist.

Aiming at harvesting the desired attributes of the GRCR
and the GID in different scenarios and system parameters,
a linear combination of their test statistics has been propo-
sed in [7] and [8]. The former applies to the detection of
communication signals in general, whereas the later considers
the detection of pulse radar signals under the sliding-window
approach [9].

Other blind detectors deserve to be highlighted, for instance
the Hadamard ratio (HR) [10], the volume-based detector
number 1 (VD1) [11], and those based on the eigenva-
lues of the received signal covariance matrix [12], [13]:
the generalized likelihood ratio test (GLRT), the arithmetic
to geometric mean (AGM), and the maximum-to-minimum
eigenvalue detection (MMED). Such detectors have similar
computational complexities, but potentially different perfor-
mances depending on the systemic parameters.

B. Contributions and structure of the paper

In this paper, the hybrid GRCR-GID (HGG) test statistic
is devised. It is formed as a ratio of quantities in which
the numerator comes from the GRCR test statistic and the
denominator comes from the GID. It is demonstrated that
the HGG achieves a combination of the best attributes of
the GRCR and the GID, being capable of overcoming these
basis detectors for some system parameters and scenarios. In
most of the situations in which the performances are assessed
under variations of system parameters, the performance of
HGG unveils a compensating character: while one of the
base detectors is penalized in performance for some parameter
values and the other is improved, the HGG stays in between
the performances achieved by the GRCR and the GID over
practically the whole parameter variation ranges. Moreover,
the HGG has low computational complexity, exhibits the
constant false alarm rate property, and is robust against
received signal and noise powers that might be nonuniform
across the cognitive radios, as well as time-varying.

The remainder of the text is organized as follows: Sec-
tion II describes the system model, presents the GRCR and
the GID detectors, proposes the new HGG, and lists the
state-of-the-art competing detectors chosen for comparison
purposes. Section III is devoted to extensive numerical results
and discussions. Section IV concludes the paper and gives
directions for further related research.

II. SYSTEM MODEL

In this paper, a centralized cooperative spectrum sensing
(CSS) with data fusion is adopted.

A. Signal model

The CSS is accomplished by means of m cognitive SUs,
each one collecting n samples of the signal received from s
primary transmitters during each sensing interval. At the FC,
such samples form the matrix Y ∈ Cm×n given by

Y = HX+V. (1)

In this equation, the samples associated to the signals trans-
mitted by the s PUs are arranged in the matrix X ∈ Cs×n.

These samples are Gaussian distributed, with zero mean and
variance dependent of the average signal-to-noise ratio (SNR)
across the SUs. The Gaussian distribution is adopted due to
the fact the it appropriately describes the envelope fluctuations
of typical modulated and filtered communication signals [14].

The channel matrix H ∈ Cm×s in (1) is formed by elements
hij , i = 1, 2, . . . ,m, j = 1, 2, . . . , s, which represent the
flat (frequency non-selective) sensing channel gains between
the j-th PU and the i-th SU. These gains are assumed to
be constant during the sensing interval and independent and
identically distributed (i.i.d.) between consecutive sensing
rounds, i.e., a slow block fading channel is assumed. This
channel matrix is given by

H = GA, (2)

where A ∈ Cm×s is the matrix whose elements
aij ∼ CN [

√
K/(2K + 2), 1/(K + 1)], i = 1, . . . ,m, gua-

rantee unitary second moment of the fading magnitude, and
where K is the Rice factor [6], [15, pp. 211-219]. In a
multipath fading channel, the Rice factor is the ratio between
the power in the dominant multipath component and the power
of the remaining ones. A larger K means a stronger line-
of-sight (LoS) received signal. If K = 0, the Ricean fading
specializes to the Rayleigh fading, which corresponds to no
LoS. If K → ∞, a pure additive white Gaussian noise
(AWGN) channel results. For practical purposes, an almost-
pure AWGN is observed if K > 10.

Following [5], the realistic scenario of possibly different
received signal levels across the SUs is also considered herein;
level differences can arise, for instance, due to different
channel attenuations between the PU transmitters and the
SU receivers. To take this fact into account, the matrix
G ∈ Rm×m in (2) is a diagonal gain matrix given by
G = diag

(√
p/pavg

)
, where p = [p1, p2, . . . , pm]T is the

vector with the received signal powers in each SU, and
pavg = 1

m

∑m
i=1 pi is the average received signal power over

all SUs.
Without loss of generality, the overall channel power gain is

unitary, meaning that each PU transmits with a constant power
given by pavg/s. When nonuniform-dynamical received signal
powers are considered, which means signal levels potentially
different across the SUs and variable over time, it follows that
pi ∼ U [0.05pavg, 1.95pavg] in each sensing round.

In the case of uniform noise, the matrix V ∈ Cm×n in (1)
is formed by i.i.d. Gaussian noise samples with zero mean and
variance σ2, i.e V ∼ NC(0, σ2I), with I being the identity
matrix of order m. In the case of nonuniform-dynamical
noise, the elements of the i-th row of V have variance σ2

i ,
i = 1, . . . ,m. Specifically, σ2

i ∼ U [0.05σ2
avg, 1.95σ

2
avg] during

each sensing interval, where σ2
avg = 1

m

∑m
i=1 σ

2
i is the average

noise variance across the SUs. Thus, the received SNR, in dB,
averaged over all SUs is SNR = 10 log10(pavg/σ

2
avg).

B. GRCR and GID test statistics

At the FC, the received signal sample covariance matrix
(SCM) is computed as

R =
1

n
YY†, (3)

where † denotes the complex conjugate and transpose.
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From [5], the GRCR test statistic, which is grounded on
the Geshgoring circle theorem [16, p. 82], is given by

TGRCR =

∑m
i=1

∑m
j=1,j 6=i |rij |∑m
i=1 rii

, (4)

where rij is the element in the i-th row and j-th column of R,
for i, j = 1, . . . ,m.

The GID test statistic has been proposed in [6], and is
grounded on the Gini index [17, p. 3400]. Apart from a
constant factor that does not influence performance, this
statistic is given by

TGID =

∑m2

i=1 |ri|∑m2

i=1

∑m2

j=1 |ri − rj |
, (5)

where ri is the i-th element of the vector r formed by stacking
all columns of R.

C. Proposed HGG test statistic

The proposed hybrid GRCR-GID test statistic is formed as
a ratio of quantities in which the numerator comes from (4),
and the denominator comes from (5), yielding

THGG =

∑m
i=1

∑m
j=i,j 6=i |rij |∑m2

i=1

∑m2

j=i |ri − rj |
, (6)

where slight modifications with respect to (4) and (5) have
been made in the lower limits of the rightmost summations
to speed-up computation. This has been made owed to the
complex-conjugate symmetry of R, which produces repeated
entries in these summations.

The global decision at the FC is made in favor of the
presence of the PU signal in the sensed band (hypothesis H1)
if THGG > λ, where λ is the decision threshold configured ac-
cording to the desired performance. Otherwise, if THGG ≤ λ,
a vacant band (hypothesis H0) is declared.

It can be noticed from (4), (5) and (6) that the three
detectors have roughly the same computational complexity,
which is in fact dominated by the complexity associated to
the computation of the sample covariance matrix given in (3),
i.e., O(nm2) [5], [6].

As stated in [5] and [6], the GRCR and the GID are the
blind detectors with the lowest computational complexities
known so far; the HGG is now added to these two, having
the same computational cost growth in the big-O notation.

D. Competing detectors

As stated in Section I, the GLRT, the AGM, the MMED, the
HR, and the VD1 test statistics form a list of recent blind de-
tectors that are adopted in this article for comparisons with the
GRCR, the GID and with the new HGG. The competing de-
tectors have been chosen because they are representative of the
state-of-the-art and have similar implementation complexities.
According to [5], their complexities are O(nm2) +O(m3),
which is mainly owed to the computation of eigenvalues and
determinants. Hence, it can be concluded that the complexity
O(nm2) of the HGG is considerably smaller.

The test statistics GLRT, AGM, MMED, HR and VD1 [10],
[11], [12], [13], are, respectively

TGLRT =
λ1∑m
i=1 λi

, (7)

TAGM =
1
m

∑m
i=1 λi

(
∏m

i=1 λi)
1
m

, (8)

TMMED =
λ1
λm

, (9)

THR =
det(R)∏m
i=1 rii

, (10)

TVD1 = log
[
det(E−1R)

]
. (11)

In these expressions, λ1 ≥ λ2 ≥ · · · ≥ λm are the eigen-
values of R, det(R) is the determinant of R, yij are the
elements of Y, rij are the elements of R, and E = diag(d),
in which diag(d) is the diagonal matrix whose main diagonal
is formed by the elements of the vector d = [d1, d2, · · · , dm],
with di = ‖R(i, :)‖2, being ‖ · ‖2 the Euclidean norm.

III. NUMERICAL RESULTS

A. Verifying the constant false alarm rate (CFAR) property

The GRCR and the GID have the important property of
CFAR, which guarantees that Pfa is not influenced by the
noise power across the SUs’ receivers. Hence, it is expected
that the hybridization of these test statistics propagates their
CFAR property to the HGG. In order to verify, Fig. 1 shows
the empirical probability density functions (PDFs) of THGG
under the hypotheses H0 and H1, for two different values of
the noise variance σ2

avg. Since the supports of the PDFs did
not change with σ2

avg, it is concluded that the proposed HGG
detector exhibits the CFAR property.
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Fig. 1. Empirical PDFs of THGG under different noise variances, for
SNR = −8 dB, s = 1, m = 6, n = 50, K = 10, and nonuniform-
dynamical received signal and noise powers across the SUs.

B. Performance results

A typical graphical tool for analyzing the probabilities of
detection (Pd) and false alarm (Pfa) simultaneously is the
receiver operating characteristic (ROC) curve, which trades
these probabilities as the decision threshold is varied. A
condensed metric also often used is the area under the ROC
curve (AUC). The worst and useless detector performance,
which corresponds to a ROC curve with Pd = Pfa, gives
AUC = 0.5. The optimum detector performance corresponds
to a ROC curve attaining Pd = 1 and Pfa = 0, yielding
AUC = 1. Hence, for a non-trivial detector, 0.5 < AUC ≤ 1.

In the following we present results of the AUC as a function
of variations in all system parameters that are relevant to the
spectrum sensing performance. Some ROC curves are also
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given as closing results at the end of the section. All results
were produced by computer simulations using the MATLAB
software, version R2018a, from 30000 Monte Carlo events in
which the received signal matrix Y was generated under the
hypothesis H1 (to estimate Pd) and H0 (to estimate Pfa). The
AUCs were computed using the built-in MATLAB function
−trapz(Pfa, Pd) from the corresponding ROC curves.

Fig. 2 presents AUCs versus the sensing channel Rice
factor K, for s = 1 PU transmitter, m = 6 SU receivers,
n = 100 samples, and average SNR = −10 dB, considering
uniform (left) and nonuniform-dynamical (right) received sig-
nal and noise powers. Comparing the two graphs, one can
notice that the detectors GRCR, GID, HGG, HR and VD1
are robust against nonuniform-dynamical signal and noise,
since their performances exhibited small changes from the left
to the right graph. Notice that the HGG unveiled practically
unnoticeable change, meaning that it is more robust than the
others. The eigenvalue-based detectors MMED, GLRT and
AGM are clearly very sensitive to received signal and noise
power variations, i.e., they are referred to as non-robust.
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Fig. 2. AUC versus Rice factor (K), for s = 1, m = 6, n = 100 and
SNR = −10 dB: uniform (left) and nonuniform-dynamical (right) signal
and noise powers. Better viewed in color.

Fig. 2 also confirms the expected outcome of improved
performances of the robust detectors as K increases. The
improvement of the GID is quite distinct from the others,
which is characteristic of its desired suitability to channels
having some sort of propagation path dominance [6]. The
HGG has produced an intermediate performance with respect
to the GID and the GRCR, which is consistent with the
motivation for hybridizing them to form the HGG. For the
parameters at hand, the HGG is the second best detector
from mild-to-high Rice factors, staying close to the top three
detectors for any K.

Given that the robustness of the detectors can be determined
from Fig. 2, and the fact that the nonuniform-dynamical signal
and noise scenario is more realistic, the remaining AUCs
shown hereafter assume only this situation.

Fig. 3 shows how the number of samples n affects the
spectrum sensing performances. As expected, the increase
of n yields performance improvements to the detectors in
analysis, but in different amounts. The non-robust detectors
(MMED, GLRT and AGM) are little influenced by n, and the
GID lies in the middle for K = 0 because of its characteristic
poor performance in this situation. It can also be noticed

that the proposed HGG lies among the top-three for any n,
showing noticeable advantage for smaller numbers of samples.
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Fig. 3. AUC versus number of samples (n), for s = 1, m = 6 and
SNR = −10 dB: K = 0 (left), K = 10 (right). Better viewed in color.

The influence of the SNR is depicted in Fig. 4. In spite
of the apparent uselessness of the non-robust detectors ob-
served in the previous results, they indeed unveil attractive
performance improvements with the SNR, above ≈ −12 dB,
whereas the other detectors show monotonic performance
improvements above−20 dB. When K = 0, the GID achieved
a saturation-like behavior before the AUC approaches 1,
meaning that the SNR wall [18] of this detector happens at
lower SNR values. Again, the GID unveils top performance
for any SNR when K is large. The HGG attains the second
best performance among all competing detectors for any SNR,
for the particular parameter setting adopted in this plot. The
desired low sensitivity of the HGG to the Rice factor is
again demonstrated, indeed combining the complementary
sensitivities of the GID and the GRCR.
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Fig. 4. AUC versus average SNR across the SUs, for s = 1, m = 6 and
n = 100: K = 0 (left), K = 10 (right). Better viewed in color.

Fig. 5 reports the influence of the number of SUs, m,
on the spectrum sensing performance. Mild improvements
are verified for the non-robust detectors as m increases.
The performance of the robust detectors improves as m is
increased, but in a diminishing-return fashion. Once again,
the poor performance of the GID when K = 0 is observed,
while it attains top performance for any m in the situation of
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large K. The HGG lies near to the second rank for any K
(as already observed in Fig. 2), and any m.
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Fig. 5. AUC versus number of SUs (m), for s = 1, n = 100 and
SNR = −10 dB: K = 0 (left), K = 10 (right). Better viewed in color.

The performance variations with the number of PU trans-
mitters, s, are depicted in Fig. 6. The non-robust detectors
(MMED, GLRT and AGM) again unveil poor performances
due to the low SNR regime (see Fig. 4), and are little affected
by the value of s for any K. When K is high, all detectors
practically do not exhibit performance variations with s. When
K = 0, the performances of the robust detectors (GRCR,
GID, HGG, HR and VD1) are penalized as s is increased,
but in different amounts. The HGG lies near to the second
rank position for any s.
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Fig. 6. AUC versus number of PUs (s), for m = 6, n = 100 and
SNR = −10 dB: K = 0 (left), K = 10 (right). Better viewed in color.

In all performance results presented up to this point, it
is worth observing the excellent performance of the HR
detector, being always among the top three for any system
parameterization, in many situations occupying in the top
rank position. Nonetheless, one must be aware of the high
computational complexity of this detector (compared with the
HGG), as stated in the end of Subsection II-D.

Finally, one should bear in mind that, in practice, there are
situations in which we are forced to adopt specific system
parameters, for instance when the degree of freedom is
reduced by the intrinsic and almost-always present systemic
restrictions. However, it is not unlikely to have full flexibility
to freely set most of the parameters, if not all. Hence,

the results presented in this section can be used to find
system configurations and scenarios that yield the intended
performance of any of the addressed detectors. Based on these
arguments, closing results are shown in Figs. 7 and 8 in terms
of ROC curves, where a set of parameters is unfavorable
(Fig. 7) to the HGG detector, and another one is favorable
(Fig. 8).
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Fig. 7. ROC curves considering an unfavorable system parameter setting:
K = 0, n = 400, SNR = −10 dB, m = 6, s = 1, and nonuniform-
dynamical signal and noise levels. Better viewed in color.

The unfavorable parameters are K = 0 with nonuniform-
dynamical signal and noise powers (given the worse perfor-
mance of the HGG shown in Fig. 2 in this situation); n = 400
(practically no performance gain of the HGG with respect to
the GRCR, as shown in Fig. 3 for K = 0); SNR = −10 dB
(due to its slightly worse performance with respect to the
GRCR, as shown in Fig. 4 for K = 0); m = 6 (any value
of m can be chosen, since the relative performances of the
HGG with respect to the GRCR and the GID practically do not
change with m); s = 1 (due to its slightly worse performance
with respect to the GRCR, as identified in Fig. 6 for K = 0).

The parameters favorable to the HGG (somewhat favorable
to the other detectors as well) are K = 10 with uniform
signal and noise powers (given its attractive performances
shown in Fig. 2); n = 100 (as shown in Fig. 3 for K = 10,
smaller numbers of samples are favorable to the HGG);
SNR = −10 dB (due to the second best performance of the
HGG, as shown in Fig. 4 for K = 10); m = 6 (for the
same reason given to justify the previous set); s = 4 (since
practically the same performance is achieve for any s, as
identified in Fig. 6 for K = 10).

Fig. 7 unveils that even under unfavorable parameterization
the HGG is capable of performing close to the best detector
in this case, which is the HR. It can be also noticed that, in
this situation, the performance of the HGG is very close to
the GRCR, and away better than the GID.

In the favorable scenario, from which the other detectors
also benefit, the GID shows up in the top position in Fig. 8,
which is credited to the high Rice factor. The HGG comes in
the second place, considerably far away from the remaining
detectors.
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Fig. 8. ROC curves considering a favorable system parameter setting: K =
10, n = 100, SNR = −10 dB, m = 6, s = 4, and uniform signal and noise
levels. Better viewed in color.

IV. CONCLUSIONS

An hybridization of the test statistics GRCR and GID has
been proposed. The resultant blind detector was named hybrid
GRCR-GID (HGG). It has been demonstrated that the HGG
combines, as desired, the advantages of the base detectors,
attaining approximately the same performance of the GRCR
in the absence of a dominant propagation path, and a little
inferior performance with respect to the GID in the presence
of dominant path. The advantage of the HGG over the GID in
the absence of a dominant path is considerably large for any
system parameterization. Additionally, the HGG is capable
of outperforming the GRCR in some system configurations,
maintaining robustness against nonuniform-dynamical signal
and noise levels, with very low computational complexity and
compliant with the constant false alarm rate property.

The GRCR and the GID test statistics have been also
combined in [7] and [8] in terms of a weighted sum. The
resultant detector was named weighted GRCR-GID (WGG).
Comparing the results presented here with those reported
in [7], it can be seen that the HGG and the WGG achieve
approximated performances, but the HGG has lower compu-
tational complexity, since, in the case of the WGG, the test
statistics of the GRCR and the GID must be both computed
in order to be subsequently combined linearly. Furthermore,
the WGG needs the computation of the weights applied to
the linear combination, a process that has been accomplished
empirically in [7] and [8].

As opportunities for further related research, one could
think about other combinations of the GRCR and the GID
test statistics, or even between other test statistics that have the

same root, which is the case, for example, of the eigenvalue
based detectors. The sensing channel model could be also
improved by adding shadowing effects and frequency selecti-
vity. Another possibility would be to add impairments to the
transmissions of the samples from the SUs to the FC, like
quantization errors caused by the digitization of the sample
values, channel-induced bit errors.
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