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Abstract Digital systems design are usually synthesized in the 

synchronous paradigm using the global clock signal and they 

can be implemented in Field Programmable Gate Array (FPGA) 

and Very Large Scale Integration (VLSI) using Deep-Sub-

Micron CMOS (DSM_CMOS) technology. These digital designs 

implemented in DSM_CMOS technology have the global clock 

signal as an obstacle which makes it difficult to comply with 

requirements, such as: performance, power consumption, 

reusability, etc.; because the wires have significant delays 

(latency). One solution is to synthesize modules that are 

insensitive to wires delays, that is, the module adapts to the 

latency of communication between the modules. In this paper, 

we propose a new pipeline architecture that is insensitive to 

latency because it has the property of elasticity, obtained by the 

asynchronous control responsible for the pipeline 

communication. Our pipeline can receive data at a frequency 

unrelated to the global clock signal. Through a case study, a 

Finite Impulse Response (FIR) filter of order five was used in 

reason to prove the efficiency of our proposal. Compared to a 

conventional synchronous pipeline, we achieved a throughput 

increase of up to 14.7% on Altera's FPGA platform. 

 

Keyword Elastic Circuits, STG specification, Adaptive to 

Latency. 

 

I. INTRODUCTION 

Contemporary digital systems may require high 

integration capability, high performance, low power 

consumption [1,2]. They can be implemented in hardware 

(dedicated processors) plus software (programmable 

processors). General or dedicated processors, such as Digital 

Signal Processor (DSP), are mainly implemented in the 

pipeline architecture [3]. These systems are implemented in 

Very Large Scale Integration (VLSI) and Field 

Programmable Array (FPGA), both in the Deep Sub-Micron 

CMOS (DSM_CMOS) technology. This technology needs to 

operate with low noise and the difference between the 

maximum and minimum delay (in the wires and gates) is 

higher when compared to other CMOS technologies, and the 

delay in a wire can be greater than the delay in a gate [4]. 

Digital systems are traditionally designed in the 

synchronous paradigm, i.e., they use a global clock signal to 

synchronize their operations. In DSM-CMOS technology, a 

global clock signal requires attention due to the wires delays 

and power consumption. Besides these factors, the clock 

signal distribution is a task with increasing complexity due to 

the clock skew problem, which leads to a decrease in 

performance (latency and cycle times).  

Fig. 1 shows six modules in an Integrated Circuit (IC) that 

operate with a global clock. In the past, data communication  

 

 

 

between these modules could be done with a single clock 

cycle because the delays of data in wires could be neglected. 

In DSM-CMOS technology, the data in wires have significant        

delays, so transmitting data with a clock cycle leads to a 

strong reduction of the clock rate and increased clock skew 

[5]. 
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Fig. 1. IC with six modules synchronized with global clock. 

 
        Carloni et al. [6,7] proposed a theory for the design of 

Latency-Insensitive (LI) synchronous circuits, also known as 

elastic synchronous circuits [8,9]. It explores some of the 

advantages of asynchronous projects, which is applied in 

synchronous systems to turn them into systems that are 

insensitive to latency. LI systems are systems that are 

insensitive to wire delays. For this purpose, LI protocol also 

known as an elastic protocol has been developed to 

synchronize handshake-like signals with the system global 

clock signal. LI design was introduced to help synchronous 

circuits to tolerate excessive latency (delay) from wires [4]. 

Therefore, LI theory has introduced a new synchronous 

design paradigm that allows transmitting data between the 

transmitter and receiver type modules using a number of 

clock cycles, where this number can be an integer or a 

rational number [10]. 
 

A. The synchronization problem 

     Designing complex systems with global clocking in 

DSM_MOS technology has become impractical as it 

becomes increasingly difficult to distribute global clock to all 

parts of the chip. The solution of using some asynchronous 

modules or using modules that operate at different clock rates 

leads to the synchronization problem of asynchronous input 

signals. This can be done using a single D-type flip-flop, as 

shown in Fig. 2a. However, if the clock edge gets very close 

to the data arriving in asynchronous form, the circuit can 

enter in a metastable state in which its output is not at logical 

level 0 neither 1, but rather somewhere intermediate [11]. 

This behavior is shown in Fig. 2b. Assume that Q is initially 

low and that D has recently risen, if D goes down again at 

approximately the same time that CLK goes up, output Q can 
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start to rise and then get stuck between logical levels as D 

falls. Should Q rise or fall? In fact, any answer would be fine, 

but the flip-flop becomes indecisive. At some point, Q can 

continue at a logical level 1 or it may fall to logical level 0. 

When this happens, however, it is theoretically unlimited. If 

during this period of indecision, the circuit following from 

this flip-flop looks at the synchronized input, it sees an 

indeterminate value. The value can be interpreted by different 

subsequent logical stages, as logic 0 or 1. This can lead the 

system in an illegal or incorrect state causing the system to 

fail, such failure is traditionally called synchronization failure 

[11]. If care is not taken, any asynchronous communication 

between the synchronous modules can lead to a probable 

unacceptable failure. Fig. 3 shows the conventional solution 

for the synchronization problem which is to insert a further D 

flip-flop. 
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(a) (b)  
Fig. 2. Interaction with Flip-Flops: a) Simple, dangerous synchronizer; b) 

Oscilloscope view of metastable behavior. 
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Fig. 3. Double flip-flop solution to reduce synchronization failure. 

 

B. Pipeline design 

 A style of synchronous digital design that achieves high 

performance is the pipeline style [12]. A basic synchronous 

pipeline system, shown in Fig. 4, has three limitations 

intrinsic to the architecture and that are aggravated by 

DSM_CMOS technology: a) the difficulty of knowing when 

the data is valid at the pipeline output; b) clock activating the 

registers of each stage, even without new data to store; c) 

difficulty in diagnosing the valid data arriving at the pipeline 

input, because data transfer may need several clock cycles, 

and as commented, the number of cycles can be an integer or 

a rational number.  
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Fig. 4. Conventional Scheme of a Linear Synchronous Pipeline. 

 

Different proposals for LI pipeline architectures have been 
made, but they use a sophisticated control to synchronize the 
data with the clock signal [7]. In this paper we propose a new 
gated-clock architecture, shown in Fig. 5, to implement linear 
pipeline systems that is insensitive to latency and are 
principally intended for applications that involving high 
throughput as digital signal processing and image processing, 
which are widely used areas in the military and aerospace 
sector. 

The proposed pipeline architecture was generated using 

the synchronous and asynchronous paradigms. The 

synchronous concept allows the no need for insertion of delay 

elements at each stage of the pipeline (use of the clock 

signal). The value of the inserted delay elements, for 

example, in an FPGA is obtained in the exhaustive form and 

it can be a sub-optimal value. The asynchronous concept 

allows the introduction of elasticity in the pipeline, obtained 

through protocol handshaking. The elasticity of the pipeline 

becomes insensitive to latency of the wires communication. 
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Fig. 5. Proposal of the  synchronous-asynchronous mixed  pipeline with 

clock-gating. 

 

II. LI SYNCHRONOUS PIPELINE DESIGN: REVIEW 

 The pipeline technique applied in the design of digital 

systems has been instrumental in increasing parallelism. It 

has been applied with great success in high performance 

processors, multimedia, signal processors, etc.  Architecture 

of a pipeline system can be classified into different classes: 

linear or non-linear [3]. A second classification is if the 

pipeline architecture is synchronous [12], asynchronous [13-

16], synchronous insensitive to (elastic) latency [17-19], or 

mixed mode (synchronous and asynchronous) [20]. In a 

synchronous pipeline system, a complex module is 

partitioned into smaller sub-modules and registers are 

inserted between the sub modules, forming stages where the 

registers are activated by a global clock signal. 

 

In a LI pipeline system, the events are synchronized with 

a global clock signal, but the data arrives at different times in 

a large temporal variability, the synchronization with the 

clock signal is made by the LI protocol that has a pair of 

"Valid" and "Stop" signals showing when data is valid or not 

(see Fig.6). There are different variants in the design of LI 

synchronous systems, for example, an interesting variant is 

the interlocked pipeline proposed in [17] which strongly uses 
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principles of the handshake protocol. This pipeline is limited 

by the lack of the stop signal, being that the valid signal and 

input data must be synchronized. Fig. 6 shows a LI 

synchronous pipeline that operates on the protocol that 

contains only the Valid signal [18]. Fig. 7 shows a LI 

synchronous pipeline that operates with the protocol based on 

the Valid and Stop signals that was proposed in [19]. 
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Fig. 6. LI Synchronous Pipeline without Stop signal of [18].  
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Fig. 7. LI Linear synchronous pipeline: only stores valid data that is 

independent of the clock cycles with the help of Stop signal [19]. 

 

III. CONTROL FOR  SYNC-ASYNC MIXED  PIPELINE  

WITH  CLOCK-GATING 

        The proposed LI pipeline architecture is composed of 

processing modules, D flip-flops based on registers, clock-

gating generator and a control in each register. The pipeline 

uses three different controls where there are the input (shown 

in Fig. 8a) and output controls (shown in Fig. 8b) completing 

the internal control (shown in Fig. 8c). The control consists 

of an Asynchronous Finite State Machine (AFSM) and a 

synchronizer which synchronizes with the global clock,   

respectively, of the input and output Valid signals (Valid-

i,Valid-o), Stop (Stop-i,Stop-o), and that operate on  2-phase 

protocol. For the internal control there is the Ai signal 

(acknowledge input signal), meaning that the initial register 

has accepted the request to store. The AFSM decide the write 

operation in the register and it was described in the STG 

(Signal Transitions Graph) specification of [21], shown in 

Fig. 9. It is composed by the following signals: Ri (valid data 

at the input stage - request-store in the initial register), Ro 

(request output, stage final register is being able to accept 

new data) and L (stores the data).  

 

      The proposed AFSM was synthesized by the Petrify tool 

[22]. Fig. 10 shows the logic circuit generated by the Petrify 

tool, where it did not need to introduce internal signal to 

satisfy the CSC (Complete State Coding) [5]. The proposed 

pipeline uses the clock-gating technique to optimize the 

power consumption related to the clock signal. Fig. 11 shows 

the proposed clock-gating for the pipeline circuit, being for 

each stage register, an XOR gate, which represents when the 

register can store.   

(a) (b)
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Fig. 8. Proposed control: a) input schema; b) output schema; c) inner control. 
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IV. CASE STUDY 

To illustrate our LI synchronous pipeline architecture 

behavior, we used the FIR filter of order five (see equation 

1), which are important in the area of digital signal 

processing. Using the behavioral synthesis procedure of [23], 

the FIR filter design was generated from the stepped data 

flow graph, which was obtained by the list scheduling 

algorithm, with the resource constraints of two multipliers 

and an adder. Fig. 12 shows the 6-stage datapath pipeline 

obtained in [24]. 

 

                              N-1 

                    Y[t]= ∑ H[i]*X[t-1]               (1) 

                               i=0 
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 Fig. 12. FIR filter: pipeline data-path of [24]. 

 

V. SIMULATION & RESULTS 

In order to demonstrate the architecture performance, it 

was realized the simulation and synthesis of the FIR filter in 

the proposed synchronous-asynchronous mixed pipeline 

architecture, was described in structural VHDL and 

implemented in the FPGA platform. Murray et al. [25] shows 

that the LI paradigm improves performance on the FPGA 

platform; Simulation and synthesis were performed in 

QUARTUS II software version 9.1 of ALTERA [26], family 

CYCLONE II in device EP2C35F672C6 and in family 

STRATIX II in device EP2S15F484C3.  

 

Fig. 13 and 14 show, respectively, the simulations of the 

six stages FIR filter in proposed architecture. The simulation 

in Fig. 13 shows the operation of the pipeline, presenting in 

time the waveforms of the input signals {x} and output {y}, 

where constants h, x and y are integer values. 

 

The simulation in Fig. 14 shows the FIR filter of order 

five generating the expected processing, with six control 

circuits, and showing the Gclk signal, the Ri (ri) signal (Valid 

- in the transition of 01 and 10), in pipeline input and 

signal Ai (ai) (transition 01 and 10) confirming initial 

storage. At the output of the pipeline there is the signal Ro 

(ro) that at the transition from 01 and 10, signals the new 

values of y. 

 

 
Fig. 13. Simulation: Filter FIR and input/output signals. 

 
Fig. 14. Simulation: Filter FIR in the synchronous-asynchronous mixed 

pipeline of six-state with clock-gating. 

 

The tables below presents results of the FIR filter in the 

proposed synchronous-asynchronous mixed architecture, LI 

synchronous architectures of [24] and a basic synchronous 

version. All the architectures were implemented in FPGA and 

the results involves latency time, area (LUTs + FFs), 

dynamic power and throughput. 

 

Table I presents results of the proposed architecture and 

the basic synchronous version shown in figure 4. The two 

implementations were performed in the STRATIX II family 

on the EP2S15F484C3 device. We can highlight the 

reduction and increase respectively of 17.1% and 14.7% in 

latency time and throughput in the proposed architecture, and 

also we had area penalty (LUTs + FFs) and dynamic power.   

  Table II involves the same implementations of Table I, 

but using the CYCLONE II family and EP2C35F672C6 

device. We can highlight the 14.17% increase in throughput 

in the proposed architecture. There was a penalty of 14.7%, 

17.6% and 74.9% respectively in the latency time, area 

(LUTs + FFs) and dynamic power. 

Table III presents results of the proposed architecture and 

of three LI synchronous pipeline architectures of [24]. The 

four implementations were made in the STRATIX II family 

on the EP2S15F484C3 device. We can highlight the average 

reductions of 57.7%, 38.8% respectively latency time and 

area in the proposed architecture. There was an average 

penalty at the dynamic power of 45.6%. 
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TABLE I: RESULTS OF FIR FILTER OF FIFTH ORDER:  FAMILY 

STRATIX II IN DEVICE EP2S15F484C3 

FIR

Throughput

MOPS Number of
LUTs

Macro cell

Number of 
Flip-Flops

140.65

54 198

15437

161.3PROPOSAL

Figure 5

SYNCHRONOUS

Figure 4

Dynamic

Power

583.49mw

368.41mw

Latency

Time

54.68ns

45.33ns

 
 TABLE II: RESULTS OF FIR FILTER OF FIFTH ORDER:  FAMILY 

CYCLONE II IN DEVICE EP2C35F672C6 

FIR

Throughput

MOPS Number of
LUTs

Macro cell

Number of 
Flip-Flops

110.01

457 352

308380

125.53PROPOSAL

Figure 5

SYNCHRONOUS

Figure 4

Dynamic

Power

307.12mw

175.53mw

Latency

Time

57.16ns

65.6ns

 
TABLE III: RESULTS OF FIR FILTER OF FIFTH ORDER IN THE LI 

PIPELINES AND SYNC-ASYNC MIXED PIPELINE 

ARCHITECTURES

 LI Pipeline
Figure 7 of [24]

Latency

Time

Number of
LUTs

Dynamic
Power

82,78ns 240

240 66 368,85mw

404,66mw72

123,40ns

Number of

Flip-Flops

115,23ns 240 78 428,49mw

 LI Pipeline
Figure 8 of [24]

LI Pipeline
Figure 9 of [24]

PROPOSAL
Figure 5

45.33ns 154 37 583.49mw

 

VI. CONCLUSION 

Digital pipeline systems are traditionally designed in the 

synchronous paradigm, so they use a global clock signal to 

synchronize their operations, besides they are implemented in 

DSM_CMOS technology, then the wires can have significant 

latency and the communication between synchronous 

modules may require several clock cycles, so not degrading 

performance. In this paper, we present a new pipeline 

architecture that mixes the synchronous and asynchronous 

paradigms, generating an architecture that has the LI property 

and does not use delay elements that represent the critical 

path of data-path of each stage of the pipeline. Because, 

asynchronous pipeline in the Bundled-data class i.e. uses 

conventional functional units, synchronization is done on 

protocol handshaking and delay elements [15]. Through a 

case study, in the case of a FIR filter application, we show 

the performance of the proposed synchronous-asynchronous 

mixed pipeline and the operation correctness in the latency 

independent environment, where it only stores valid data 

regardless of the time intervals in which they occur. 
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