
A New Synchronous-Asynchronous Mixed Pipeline

Architecture with Clock-Gating

Duarte L. Oliveira
1
, Nicolly N. M. Cardoso

1
, Gracieth C. Batista

1
, Diego A. Silva

1
, Leonardo Romano

2

1Divisão de Engenharia Eletrônica do Instituto Tecnológico de Aeronáutica – ITA – IEEA – SJC – São Paulo – Brazil
2Departamento de Engenharia Elétrica – Centro Universitário da FEI – São Bernardo do Campo – São Paulo – Brazil

Abstract Digital systems design are usually synthesized in the

synchronous paradigm using the global clock signal and they

can be implemented in Field Programmable Gate Array (FPGA)

and Very Large Scale Integration (VLSI) using Deep-Sub-

Micron CMOS (DSM_CMOS) technology. These digital designs

implemented in DSM_CMOS technology have the global clock

signal as an obstacle which makes it difficult to comply with

requirements, such as: performance, power consumption,

reusability, etc.; because the wires have significant delays

(latency). One solution is to synthesize modules that are

insensitive to wires delays, that is, the module adapts to the

latency of communication between the modules. In this paper,

we propose a new pipeline architecture that is insensitive to

latency because it has the property of elasticity, obtained by the

asynchronous control responsible for the pipeline

communication. Our pipeline can receive data at a frequency

unrelated to the global clock signal. Through a case study, a

Finite Impulse Response (FIR) filter of order five was used in

reason to prove the efficiency of our proposal. Compared to a

conventional synchronous pipeline, we achieved a throughput

increase of up to 14.7% on Altera's FPGA platform.

Keyword Elastic Circuits, STG specification, Adaptive to

Latency.

I. INTRODUCTION

Contemporary digital systems may require high

integration capability, high performance, low power

consumption [1,2]. They can be implemented in hardware

(dedicated processors) plus software (programmable

processors). General or dedicated processors, such as Digital

Signal Processor (DSP), are mainly implemented in the

pipeline architecture [3]. These systems are implemented in

Very Large Scale Integration (VLSI) and Field

Programmable Array (FPGA), both in the Deep Sub-Micron

CMOS (DSM_CMOS) technology. This technology needs to

operate with low noise and the difference between the

maximum and minimum delay (in the wires and gates) is

higher when compared to other CMOS technologies, and the

delay in a wire can be greater than the delay in a gate [4].

Digital systems are traditionally designed in the

synchronous paradigm, i.e., they use a global clock signal to

synchronize their operations. In DSM-CMOS technology, a

global clock signal requires attention due to the wires delays

and power consumption. Besides these factors, the clock

signal distribution is a task with increasing complexity due to

the clock skew problem, which leads to a decrease in

performance (latency and cycle times).

Fig. 1 shows six modules in an Integrated Circuit (IC) that

operate with a global clock. In the past, data communication

between these modules could be done with a single clock

cycle because the delays of data in wires could be neglected.

In DSM-CMOS technology, the data in wires have significant

delays, so transmitting data with a clock cycle leads to a

strong reduction of the clock rate and increased clock skew

[5].

Module-1

Module-5

Module-4

Module-2

Module-3

Module-6

Data + Control

CLK
Data_out

Fig. 1. IC with six modules synchronized with global clock.

 Carloni et al. [6,7] proposed a theory for the design of

Latency-Insensitive (LI) synchronous circuits, also known as

elastic synchronous circuits [8,9]. It explores some of the

advantages of asynchronous projects, which is applied in

synchronous systems to turn them into systems that are

insensitive to latency. LI systems are systems that are

insensitive to wire delays. For this purpose, LI protocol also

known as an elastic protocol has been developed to

synchronize handshake-like signals with the system global

clock signal. LI design was introduced to help synchronous

circuits to tolerate excessive latency (delay) from wires [4].

Therefore, LI theory has introduced a new synchronous

design paradigm that allows transmitting data between the

transmitter and receiver type modules using a number of

clock cycles, where this number can be an integer or a

rational number [10].

A. The synchronization problem

 Designing complex systems with global clocking in

DSM_MOS technology has become impractical as it

becomes increasingly difficult to distribute global clock to all

parts of the chip. The solution of using some asynchronous

modules or using modules that operate at different clock rates

leads to the synchronization problem of asynchronous input

signals. This can be done using a single D-type flip-flop, as

shown in Fig. 2a. However, if the clock edge gets very close

to the data arriving in asynchronous form, the circuit can

enter in a metastable state in which its output is not at logical

level 0 neither 1, but rather somewhere intermediate [11].

This behavior is shown in Fig. 2b. Assume that Q is initially

low and that D has recently risen, if D goes down again at

approximately the same time that CLK goes up, output Q can

Duarte L. Oliveira, duarte@ita.br, Tel +55-12-3947-6813; Nicolly N. M.

Cardoso, nicollynmcardoso@gmail.com; Gracieth C. Batista,
gracieth@ita.br; Diego A. Silva, dasilva@ita.br; Leonardo Romano,

leoroma@uol.com.br

mailto:duarte@ita.br
mailto:nicollynmcardoso@gmail.com
mailto:gracieth@ita.br
mailto:dasilva@ita.br
Romildo
Placed Image

Romildo
Text Box
ISSN: 1983 7402

Romildo
Text Box
ITA, 24 a 26 SET de 2019

Romildo
Text Box
176

start to rise and then get stuck between logical levels as D

falls. Should Q rise or fall? In fact, any answer would be fine,

but the flip-flop becomes indecisive. At some point, Q can

continue at a logical level 1 or it may fall to logical level 0.

When this happens, however, it is theoretically unlimited. If

during this period of indecision, the circuit following from

this flip-flop looks at the synchronized input, it sees an

indeterminate value. The value can be interpreted by different

subsequent logical stages, as logic 0 or 1. This can lead the

system in an illegal or incorrect state causing the system to

fail, such failure is traditionally called synchronization failure

[11]. If care is not taken, any asynchronous communication

between the synchronous modules can lead to a probable

unacceptable failure. Fig. 3 shows the conventional solution

for the synchronization problem which is to insert a further D

flip-flop.

D Q

Q

Voltage

Time

Asynchronous
Input

Clk

Synchronized
Output

D

Q

Clk

(a) (b)
Fig. 2. Interaction with Flip-Flops: a) Simple, dangerous synchronizer; b)

Oscilloscope view of metastable behavior.

Asynchronous
Input

Synchronized
Output

D Q

Q
Clk

D Q

Q

Metaestable
state

Fig. 3. Double flip-flop solution to reduce synchronization failure.

B. Pipeline design

 A style of synchronous digital design that achieves high

performance is the pipeline style [12]. A basic synchronous

pipeline system, shown in Fig. 4, has three limitations

intrinsic to the architecture and that are aggravated by

DSM_CMOS technology: a) the difficulty of knowing when

the data is valid at the pipeline output; b) clock activating the

registers of each stage, even without new data to store; c)

difficulty in diagnosing the valid data arriving at the pipeline

input, because data transfer may need several clock cycles,

and as commented, the number of cycles can be an integer or

a rational number.

Data
Processes

Data

R
e
g
I
s
t
e
r

CLK

Data
Processes

Data
Processes

Data

R
e
g
I
s
t
e
r

R
e
g
I
s
t
e
r

R
e
g
I
s
t
e
r

Fig. 4. Conventional Scheme of a Linear Synchronous Pipeline.

Different proposals for LI pipeline architectures have been
made, but they use a sophisticated control to synchronize the
data with the clock signal [7]. In this paper we propose a new
gated-clock architecture, shown in Fig. 5, to implement linear
pipeline systems that is insensitive to latency and are
principally intended for applications that involving high
throughput as digital signal processing and image processing,
which are widely used areas in the military and aerospace
sector.

The proposed pipeline architecture was generated using

the synchronous and asynchronous paradigms. The

synchronous concept allows the no need for insertion of delay

elements at each stage of the pipeline (use of the clock

signal). The value of the inserted delay elements, for

example, in an FPGA is obtained in the exhaustive form and

it can be a sub-optimal value. The asynchronous concept

allows the introduction of elasticity in the pipeline, obtained

through protocol handshaking. The elasticity of the pipeline

becomes insensitive to latency of the wires communication.

Processing

R
e
g
I
s
t
e
r

Input
Control

Ri

L

Ro
Inner

Control

Ri

L

Ro
Inner

Control

Ri

L

Ro
Output
Control

Ri

L

Ro

Stop-o

Data Data

R
e
g
I
s
t
e
r

R
e
g
I
s
t
e
r

R
e
g
I
s
t
e
r

CLK

Processing

GCLK

Gated-Clock
Generator

AoN-1RiN-1Ao2

Ao1

Ri1
Ri2

AoN

RoN

1 N-12 N

Valid-i Valid-o

Stop-i

Fig. 5. Proposal of the synchronous-asynchronous mixed pipeline with

clock-gating.

II. LI SYNCHRONOUS PIPELINE DESIGN: REVIEW

 The pipeline technique applied in the design of digital

systems has been instrumental in increasing parallelism. It

has been applied with great success in high performance

processors, multimedia, signal processors, etc. Architecture

of a pipeline system can be classified into different classes:

linear or non-linear [3]. A second classification is if the

pipeline architecture is synchronous [12], asynchronous [13-

16], synchronous insensitive to (elastic) latency [17-19], or

mixed mode (synchronous and asynchronous) [20]. In a

synchronous pipeline system, a complex module is

partitioned into smaller sub-modules and registers are

inserted between the sub modules, forming stages where the

registers are activated by a global clock signal.

In a LI pipeline system, the events are synchronized with

a global clock signal, but the data arrives at different times in

a large temporal variability, the synchronization with the

clock signal is made by the LI protocol that has a pair of

"Valid" and "Stop" signals showing when data is valid or not

(see Fig.6). There are different variants in the design of LI

synchronous systems, for example, an interesting variant is

the interlocked pipeline proposed in [17] which strongly uses

Romildo
Placed Image

Romildo
Text Box
ISSN: 1983 7402

Romildo
Text Box
ITA, 24 a 26 SET de 2019

Romildo
Text Box
177

principles of the handshake protocol. This pipeline is limited

by the lack of the stop signal, being that the valid signal and

input data must be synchronized. Fig. 6 shows a LI

synchronous pipeline that operates on the protocol that

contains only the Valid signal [18]. Fig. 7 shows a LI

synchronous pipeline that operates with the protocol based on

the Valid and Stop signals that was proposed in [19].

Processes
Data

Data Data

Valid Valid

CLK

R
e
g
I
s
t
e
r

En En En En

R
e
g
I
s
t
e
r

R
e
g
I
s
t
e
r

R
e
g
I
s
t
e
r

CLK

1 110

Processes
Data

Processes
Data

Fig. 6. LI Synchronous Pipeline without Stop signal of [18].

Processes
Data

R
e
g
I
s
t
E
R

Control

GCLK

Control

GCLK

Control

GCLK

Control

GCLK

Data Data

Valid Valid Valid ValidValid

CLK

StopStopStopStop Stop

Processes
Data

Processes
Data

R
e
g
I
s
t
E
R

R
e
g
I
s
t
E
R

R
e
g
I
s
t
E
R

Fig. 7. LI Linear synchronous pipeline: only stores valid data that is

independent of the clock cycles with the help of Stop signal [19].

III. CONTROL FOR SYNC-ASYNC MIXED PIPELINE

WITH CLOCK-GATING

 The proposed LI pipeline architecture is composed of

processing modules, D flip-flops based on registers, clock-

gating generator and a control in each register. The pipeline

uses three different controls where there are the input (shown

in Fig. 8a) and output controls (shown in Fig. 8b) completing

the internal control (shown in Fig. 8c). The control consists

of an Asynchronous Finite State Machine (AFSM) and a

synchronizer which synchronizes with the global clock,

respectively, of the input and output Valid signals (Valid-

i,Valid-o), Stop (Stop-i,Stop-o), and that operate on 2-phase

protocol. For the internal control there is the Ai signal

(acknowledge input signal), meaning that the initial register

has accepted the request to store. The AFSM decide the write

operation in the register and it was described in the STG

(Signal Transitions Graph) specification of [21], shown in

Fig. 9. It is composed by the following signals: Ri (valid data

at the input stage - request-store in the initial register), Ro

(request output, stage final register is being able to accept

new data) and L (stores the data).

 The proposed AFSM was synthesized by the Petrify tool

[22]. Fig. 10 shows the logic circuit generated by the Petrify

tool, where it did not need to introduce internal signal to

satisfy the CSC (Complete State Coding) [5]. The proposed

pipeline uses the clock-gating technique to optimize the

power consumption related to the clock signal. Fig. 11 shows

the proposed clock-gating for the pipeline circuit, being for

each stage register, an XOR gate, which represents when the

register can store.

(a) (b)

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Gclk

Ri
Ri

AFSM

L
Ro

Input Control

Ri

Output Control

AFSM

L
Ro

Ai

Q

Q
SET

CLR

D

Gclk

Ri
Ri

AFSM

L
Ro

Inner Control

(c)

Fig. 8. Proposed control: a) input schema; b) output schema; c) inner control.

Ri+

L+

Ro+

L-

Ri-

L+

Ro-

L-

Ri+

Fig. 9. Signal transition graph (STG) specification of AFSM.

L

Ro

Ri

Fig. 10. Logic circuit of AFSM.

Ri1

Ao1

Ri2

Ao2

AoN

RiN-1

AoN-1

RiN

D Q GCLK

En

CLK

Fig. 11. Proposed clock-gating generator.

Romildo
Placed Image

Romildo
Text Box
ISSN: 1983 7402

Romildo
Text Box
ITA, 24 a 26 SET de 2019

Romildo
Text Box
178

IV. CASE STUDY

To illustrate our LI synchronous pipeline architecture

behavior, we used the FIR filter of order five (see equation

1), which are important in the area of digital signal

processing. Using the behavioral synthesis procedure of [23],

the FIR filter design was generated from the stepped data

flow graph, which was obtained by the list scheduling

algorithm, with the resource constraints of two multipliers

and an adder. Fig. 12 shows the 6-stage datapath pipeline

obtained in [24].

 N-1

 Y[t]= ∑ H[i]*X[t-1] (1)

 i=0

R1 R2 R3 R4

R11 R12 R15 R16 R17 R18

R19 R22 R23R20 R21

R25

R5 R6 R7 R8 R9 R10

R13 R14

R26R24

R27 R28

R29

H(0) X(t) H(1) X(t-1) H(2) X(t-2) H(3) X(t-3) H(4) X(t-4)

1º

2º

3º

4º

5º

6º

+

+

+

+

 Fig. 12. FIR filter: pipeline data-path of [24].

V. SIMULATION & RESULTS

In order to demonstrate the architecture performance, it

was realized the simulation and synthesis of the FIR filter in

the proposed synchronous-asynchronous mixed pipeline

architecture, was described in structural VHDL and

implemented in the FPGA platform. Murray et al. [25] shows

that the LI paradigm improves performance on the FPGA

platform; Simulation and synthesis were performed in

QUARTUS II software version 9.1 of ALTERA [26], family

CYCLONE II in device EP2C35F672C6 and in family

STRATIX II in device EP2S15F484C3.

Fig. 13 and 14 show, respectively, the simulations of the

six stages FIR filter in proposed architecture. The simulation

in Fig. 13 shows the operation of the pipeline, presenting in

time the waveforms of the input signals {x} and output {y},

where constants h, x and y are integer values.

The simulation in Fig. 14 shows the FIR filter of order

five generating the expected processing, with six control

circuits, and showing the Gclk signal, the Ri (ri) signal (Valid

- in the transition of 01 and 10), in pipeline input and

signal Ai (ai) (transition 01 and 10) confirming initial

storage. At the output of the pipeline there is the signal Ro

(ro) that at the transition from 01 and 10, signals the new

values of y.

Fig. 13. Simulation: Filter FIR and input/output signals.

Fig. 14. Simulation: Filter FIR in the synchronous-asynchronous mixed

pipeline of six-state with clock-gating.

The tables below presents results of the FIR filter in the

proposed synchronous-asynchronous mixed architecture, LI

synchronous architectures of [24] and a basic synchronous

version. All the architectures were implemented in FPGA and

the results involves latency time, area (LUTs + FFs),

dynamic power and throughput.

Table I presents results of the proposed architecture and

the basic synchronous version shown in figure 4. The two

implementations were performed in the STRATIX II family

on the EP2S15F484C3 device. We can highlight the

reduction and increase respectively of 17.1% and 14.7% in

latency time and throughput in the proposed architecture, and

also we had area penalty (LUTs + FFs) and dynamic power.

 Table II involves the same implementations of Table I,

but using the CYCLONE II family and EP2C35F672C6

device. We can highlight the 14.17% increase in throughput

in the proposed architecture. There was a penalty of 14.7%,

17.6% and 74.9% respectively in the latency time, area

(LUTs + FFs) and dynamic power.

Table III presents results of the proposed architecture and

of three LI synchronous pipeline architectures of [24]. The

four implementations were made in the STRATIX II family

on the EP2S15F484C3 device. We can highlight the average

reductions of 57.7%, 38.8% respectively latency time and

area in the proposed architecture. There was an average

penalty at the dynamic power of 45.6%.

Romildo
Placed Image

Romildo
Text Box
ISSN: 1983 7402

Romildo
Text Box
ITA, 24 a 26 SET de 2019

Romildo
Text Box
179

TABLE I: RESULTS OF FIR FILTER OF FIFTH ORDER: FAMILY

STRATIX II IN DEVICE EP2S15F484C3

FIR

Throughput

MOPS Number of
LUTs

Macro cell

Number of
Flip-Flops

140.65

54 198

15437

161.3PROPOSAL

Figure 5

SYNCHRONOUS

Figure 4

Dynamic

Power

583.49mw

368.41mw

Latency

Time

54.68ns

45.33ns

 TABLE II: RESULTS OF FIR FILTER OF FIFTH ORDER: FAMILY

CYCLONE II IN DEVICE EP2C35F672C6

FIR

Throughput

MOPS Number of
LUTs

Macro cell

Number of
Flip-Flops

110.01

457 352

308380

125.53PROPOSAL

Figure 5

SYNCHRONOUS

Figure 4

Dynamic

Power

307.12mw

175.53mw

Latency

Time

57.16ns

65.6ns

TABLE III: RESULTS OF FIR FILTER OF FIFTH ORDER IN THE LI

PIPELINES AND SYNC-ASYNC MIXED PIPELINE

ARCHITECTURES

 LI Pipeline
Figure 7 of [24]

Latency

Time

Number of
LUTs

Dynamic
Power

82,78ns 240

240 66 368,85mw

404,66mw72

123,40ns

Number of

Flip-Flops

115,23ns 240 78 428,49mw

 LI Pipeline
Figure 8 of [24]

LI Pipeline
Figure 9 of [24]

PROPOSAL
Figure 5

45.33ns 154 37 583.49mw

VI. CONCLUSION

Digital pipeline systems are traditionally designed in the

synchronous paradigm, so they use a global clock signal to

synchronize their operations, besides they are implemented in

DSM_CMOS technology, then the wires can have significant

latency and the communication between synchronous

modules may require several clock cycles, so not degrading

performance. In this paper, we present a new pipeline

architecture that mixes the synchronous and asynchronous

paradigms, generating an architecture that has the LI property

and does not use delay elements that represent the critical

path of data-path of each stage of the pipeline. Because,

asynchronous pipeline in the Bundled-data class i.e. uses

conventional functional units, synchronization is done on

protocol handshaking and delay elements [15]. Through a

case study, in the case of a FIR filter application, we show

the performance of the proposed synchronous-asynchronous

mixed pipeline and the operation correctness in the latency

independent environment, where it only stores valid data

regardless of the time intervals in which they occur.

REFERENCES
[1] C. Constantinescu, “Trends and Challenges in VLSI Circuits

Reliability,” IEEE Micro, 23 (4), 2003.

[2] K. D. Muller-Glaser, et al. “Multiparadigm Modeling in Embedded

Systems Design”, IEEE Trans. on Control Systems Technology, vol.
12, no. 2, March 2004.

[3] S. M. Nowick and M. Singh, “High-Performance Asynchronous

Pipelines: An Overview,” IEEE Design & Test of Computers,
September/October, pp.8-22, 2011.

[4] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Coping

with the variability of combinational logic delays,” ICCD, pages 505–
508, 2004.

[5] C. J., Myers, “Asynchronous Circuit Design”, Wiley & Sons, Inc.,

2004, 2a edition.
[6] L. P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli,

“Theory of latency-insensitive design,” IEEE Transactions on

Computer-Aided Design, 20(9):1059–1076, September 2001.
[7] L.P. Carloni and A.L. Sangiovanni-Vincentelli, “Coping with latency

in SoCdesign,” IEEE Micro, Special Issue on Systems on Chip, vol.

22, no. 5, pp.12, Octo. 2002.
[8] J. Cortadella et al., “Synthesis of Synchronous Elastic Architectures,”

Proc. DAC, pp. 657–662, 2006.
[9] J. Cortadella, et al., “SELF: Specification and design of synchronous

elastic circuits,” Proc. ACM/IEEE Int. Workshop on Timing Issues,

TAU’06, pp.1-6, 2006.

[10] L.P. Carloni et al., “A Methodology for Correct-by-Construction
Latency Insensitive Design,” Proc. ICCAD, pp. 309–315, 1999.

[11] R. Ginosar, “Metastability and Synchronizers: A Tutorial,” IEEE

Design & Test of Computers, vol.:28, Issue:5, pp.23-35, 2011.
[12] T. C. Chen, “Parallelism, Pipelining and Computer Efficiency,”

Computer Design, pp. 69-74, January 1971.

[13] M. Singh and S. M. Nowick, “The Design of High-Performance
Dynamic Asynchronous Pipelines: Lookahead Style,” IEEE Trans. on

VLSI Systems, vol.15, no. 11, pp.1256-1269, November 2007.

[14] M. Singh and S. M. Nowick, “The Design of High-Performance

Dynamic Asynchronous Pipelines High-Capacity Style”, IEEE Trans.

on VLSI Systems, vol.15, no.11, ´pp.1270-1283,November, 2007.

[15] M. Singh and S. M. Nowick, “MOUSETRAP: High-Speed Transition-
Signaling Asynchronous Pipelines”, IEEE Trans. on VLSI Systems,

vol.15, no. 6, pp.684-698, June 2007.

[16] D. L. Oliveira, et al., “Using FPGAs to Implement Asynchronous
Pipeline,” 5th IEEE Latin American Symposium on Circuits and

Systems, Santiago, Chile, 2014.

[17] H.M. Jacobson et al., “Synchronous Interlocked Pipelines,” Proc.
ASYNC, pp. 3–12, 2002.

[18] H. M. Jacobson, et al., “Stretching the Limits of Clock-Gating

Efficiency in Server-Class Processors,” Proc. 11th Int. Symposium on
High-Performance Computer Architecture (HPCA-11 2005), pp.1-5,

2005.
[19] A. Islam, et al., “A New Synchronous circuit for Elastic Pipeline

Architecture,” International Conference on Materials, Electronics &

Information Engineering, ICMEIE-2015, pp. 1-4, 2015.
[20] M. Singh et al., ‘‘An Adaptively Pipelined Mixed Synchronous-

Asynchronous Digital FIR Filter Chip Operating at 1.3 Gigahertz,’’

IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 18, no.
7, pp. 1043-1056, 2010.

[21] T. –A. Chu, “Synthesis of Self-Timed VLSI Circuits from Graph-

Theory Specifications,” PhD. Thesis, June 1987, Dep. Of EECS, MIT
[22] J. Cortadella, et al. “Petrify: a tool for manipulating concurrent

specifications and synthesis of asynchronous controllers,” IEICE

Trans. on Information and Systems, E80-D(3), March, pp.315-325,
1997.

[23] D. D. Gajski, “Principles of Digital Design,” Prentice Hall, 1997.

[24] D. L. Oliveira, et al. “Uma Nova Arquitetura para Sistemas Pipeline
Síncrono Insensíveis à Latência,” XXII Iberchip Workshop,

Florianópolis, Brazil, pp.17-20, 2016.

[25] K. E. Murray and V. Betz, “Quantifying the Cost and Benefit of
Latency Insensitive Communication on FPGAs,” Proceedings of the

2014 ACM/SIGDA international symposium on Field-programmable

gate arrays, FPGA’14, pp.223-232, 2014.
[26] Altera Corporation, 2019, www.altera.com.

Romildo
Placed Image

Romildo
Text Box
ISSN: 1983 7402

Romildo
Text Box
ITA, 24 a 26 SET de 2019

Romildo
Text Box
180

