ISSN: 1983 7402

ITA, 29 a 30 SET 2020

Evaluation of netfilter and eBPF/XDP to filter TCP
flag-based probing attacks

Gustavo de Carvalho Bertolil, Lourenco A PereiraZ, Cesar Marcondes2, Osamu Saotome

1

Electronics and Computer Engineering - Aeronautics Institute of Technology (ITA)
'Electronic Devices and Systems (EEC-D) | 2Computing (EEC-I)

Abstract— This paper presents a signature-based approach
to secure networks by blocking TCP flag-based (Null, FIN,
XMAS) probing attacks performed with the well-known Nmap
security tool. Through packet filtering, this approach considers
the deployment on Linux operating systems by low-level filtering
through Linux Kernel Module (LKM) and Netfilter to directly
operate at network stack. It also presents an alternative approach
for packet filtering using the extended-Berkeley Packet Filter
(eBPF) / eXpress Data Path (XDP) solution, which allows
performing filtering at a lower level (network device driver),
improving network filtering performance by 5% in comparison
with the LKM/Netfilter solution. It also makes available an open-
source baseline for packet filtering using both LKM/Netfilter and
eBPF/XDP approaches.

I. INTRODUCTION

Cybersecurity is a concern on a more connected world
being a research topic with open challenges to be addressed.
These open questions must be answered for the envisioned
future to support applications such as connected vehicles, the
internet of things, and autonomous systems. During systems
attacks, the first required step is information gathering. As
proposed by the cyber-kill chain [1], it is also called recon-
naissance, which allows attackers to learn as much about their
target without directly performing a more invasive attack. The
data obtained in this phase allows the attacker to plan its
next steps [2]. So, detect and interrupt an attack early, which
prevents the success of the attack and saves costs and systems
resources to perform defense.

The reconnaissance of a target aims to obtain information
like available services (e.g., HTTP, FTP, SSH, RDP, Telnet)
and network configuration. It is a very prolific field with
service providers (e.g., shodan.io) that have crawlers probing
the internet and providing a real-time database (Figure 1) of
these findings with capabilities also to perform vulnerability
testing on these mapped targets [3]. The availability of tools,
computational resources, and even services raises awareness
about probing attacks, reinforcing the importance of preven-
ting them.

A common approach to prevent probing attacks is through
packet filtering as Intrusion Detection Systems (IDS) like
Snort [4] does. To perform packet filtering to detect pro-
bing attacks, the first method that can be used is through
Linux Kernel Module (LKM) in conjunction with Netfilter.
netfilter is responsible for the inner works of the well-
known and widely deployed UNIX firewall called iptables'.

Gustavo de Carvalho Bertoli, gustavo.bertoli@ga.ita.br; Lourengo A Pe-
reira, ljr@ita.br; Cesar Marcondes, cmarcondes@ita.br; Osamu Saotome,
osaotome @ita.br.

Inetfilter/iptables project - www.netfilter.org

The net £ilter works with hooks on the kernel that allows
the processing of network packets from specific points during
its traversal path on Linux kernel [5].

The second approach is based on the e BPF/XDP (extended
Berkeley Packet Filter / eXpress Data Path). BPF uses a
Virtual Machine available in Linux Kernel that allows the
execution of byte-code safely after a verification and valida-
tion process to avoid fault or security flaws. The extended
version (starting on Kernel 3.18) increases the numbers of
registers and instruction sets in 64 bits and a 512 bytes stack.
The maps also allow interaction and data exchange with the
application layer and tail-calls that address the limitation of
4096 bytes for eBPF applications. BPF is the inner work of
the famous tcpdump application through the libpcap [6] [7].
XDP (available since kernel 4.8) allows BPF programs to run
directly in the network driver - the network packet path’s
earliest point.

The comparison between the two approaches for packet
filtering (LKM/netfilter vs. eBPF/XDP) is illustrated by the
Figure 2.

Section 2 presents a Literature Review both on the probing
attack and packet filtering. Section 3 presents the methodology
adopted for this paper and the premises considered. Section 4
presents the results and discussions about the results obtained.
Ultimately, Section 5 presents the conclusion about this study.

II. LITERATURE REVIEW

Regarding the TCP probing attacks, [8] presents the use of
it to gather all Robotic Operating System (ROS)? deployments
accessible through the internet. It makes use a tool called
ZMap [9] to check for TCP port 11311 using TCP SYN
packets. It also highlights the challenges of performing an
internet-wide probing attack. The results of this internet-wide
probing scan are the starting point to perform a security
assessment on ROS. The next steps were to evaluate available
ROS’ topics and services and performed unauthorized remote
control in the latter cases. It also provides recommendations
to improve security, at minimum, [8] recommends reducing
internet exposure.

For the packet filtering domain, [10] proposes an
eBPF/XDP based firewall, in contrast to Netfilter/iptables,
guaranteeing the same iptables semantics, connection tracking
(stateful) and using another search algorithm instead of the
linear search used by iptables. This proposed implementation
outperforms iptables, especially when a large number of rules
are required to be processed.

2Robot Operating System - WwWw.ros.org

35

Romildo
Placed Image

Romildo
Text Box
ISSN: 1983 7402

Romildo
Text Box
ITA, 29 a 30 SET 2020

Romildo
Text Box
35

ETR

ol Like 258

&% SHODAN

#% Exploits #, Maps & Download Results

TOTAL RESULTS
81 RELATED TAGS:
[ORCONIRE (a|BAS SCADAZ

TDC Group

Bl Denmark, \iby

Belgium

ISSN: 1983 7402

ITA, 29 a 30 SET 2020

Explore Downloads Reports Pricing Enterprise Access

|l Create Report

New Service: Keep track of what you have connected to the Internet. Check out Shodan Monitor

HTTR/1.1 200 OK

Server: BAS SCADA Service HTTPserv:88e81
Date: Wed, @3 Jul 2019 18:12:15 GMT
Access-Control-Allow-Origin: =
Cache-Control: no-cache, max-age=8, must-revalidate
Pragma: no-cache

Expires: -1

Connection: close

Content-Type: text/html

Content-Length: 879

Last-Modified: Wed, ...

Unit ID: @

-- Device Identification: Schneider Electric 171 (BU 98898 vo1.21
—-- CPU module: 171 CBU 950898

-- Project information: Project - V3.8 SCADA-TM-NB3A C:-\MRSYS\CP37\.CP37_STU
-- Project revision: ©.0.28

-- Project last modified: 2817-87-26 16:18:13

Fig. 1. Shodan search for ICS/SCADA

Italy 94
Spain 92
United States 87
Bulgaria 46
TOP SERVICES
166.251.122.240
HTTF 462
Verizon Wireless
FTP 7
2081 34 BE United States
Modbus 29
HTTPS 1" -
User
Space Application
™~
Socket
™

© Protocols Handler

& ~N

o

w

T Network Receiver Socket Buffer

= ™~

[:F]

~

eBPF
Network Device Driver XDP Virtual
Machine
Hardware Network Interface Card (NIC)

Fig. 2. XDP/eBPF and netfilter in the Network Packet Path

About the dataset for Intrusion Detection System (IDS)
development, [11] presents a study, in their case, probing
attacks and Denial of Service (DoS). First, it mentions the
obsolescence of available and widely used datasets and pre-
sents an IDS dataset’s properties:

« realism/representative

« validity (correct form packets)

o already labeled

o high variability

« correct implementation (attacks following standard)
« case of updating

« reproducible

e no sensitive data

To compose the dataset with not malicious traffic, this nor-
mal traffic is generated considering random behavior and typi-
cal services being automatically labeled through IP addresses.
Also, this automatic labeling is performed by considering
malicious packets based on the attackers’ source address.

It introduces three types of features for network IDS
dataset, which are:

o header-based: relates to packets headers fields

o host-based: relates to communication between hosts
(source and destination)

« service-based: relates to specific services communication
between hosts (e.g. HTTP)

Then, [11] uses a machine learning approach for attack
detection. First, it performs training in known attacks and
evaluates algorithms’ performance on scenarios of known,
similar, and new attacks.

For the probing attacks, it is considered as known attacks
the traditional TCP and UDP scans performed with nmap
tool, as a similar attack, it uses the OS and service fingerprint
also performed by nmap, and new attacks are those of
vulnerability scan performed by Nessus®.

It concludes that the machine learning approach has excel-
lent performance for detecting known and similar attacks but
does not have good performance for new attacks.

Finally, [11] dataset lack information about IP addresses for
labeling purpose. Also, the lighter dataset (arff files) works
with normalized values. Without more information about the
mean and standard deviation of each attribute, it does not help
to use the dataset to derive rules for embedded application,
as this paper requires (lack of reproducibility).

[12] presents a detecting approach for probing attacks based
on TCP protocol; it uses a stateless approach and machine
learning (decision tree, naive Bayes, and KNN). It does not
evaluate similar probing events or new events, as suggested
and performed by [11]. [12] also highlights the importance
of efficiency for security tasks when considered constrained
devices, i.e., the Internet of Things. It also points out the diffi-
culty of obtaining datasets for security research and proposes a
dataset creation process. This process lacks representativeness

3Nessus: tenable.com/products/nessus

36

Romildo
Placed Image

Romildo
Text Box
ISSN: 1983 7402

Romildo
Text Box
ITA, 29 a 30 SET 2020

Romildo
Text Box
36

ISSN: 1983 7402

mainly when taking into account properties presented by [11].
This proposed dataset is used to perform training and tests
and considers just as future work the implementation of the
proposed packet filters, specifically kernel modules.

III. METHODOLOGY

The methodology adopted considers a stateless approach
using only header-based features to evaluate each packet
received from the network. Header-based features are those
introduced by the Protocol to encapsulate data to be transmit-
ted, such as:

« Ethernet-header features: length

o IP-header features: total length, time to live, protocol,
checksum

o ICMP-header features: type, code, identifier, sequence
number

o TCP-header features: sequence number, flags, ack num-
ber, window size, source and destination ports

o UDP-header features: length, checksum, source and des-
tination ports

From the available headers’ features, deterministic rules
were created and tested to match packets transmitted during
probing scan attacks. The probing attacks in this study’s scope
are the flag-based TCP port scanning techniques available
through the widely known tool nmap.

The tests to confirm rule effectiveness were performed on
Wireshark using a dataset containing multiple scan attacks
and provided by [11] - specifically the known probing attacks
dataset.* - and also locally using nmap and Wireshark in
promiscuous mode to verify that the rules still apply in a live
environment with the latest version of nmap.

Furthermore, the implementation of the rules was made
both through Linux Kernel Module using netfilter and
eBPF code using XDP deployment. Both implementations are
them compared to evaluate effectiveness to reject nmap scan
attempts and to evaluate network performance.

A. Probing Attack

Probing Attacks aims to evaluate the characteristics of the
target. It is a reconnaissance step for a black-box approach of
attack, which means that no prior knowledge about the target
is available to attackers. Hence, a probing attack is usually
the first step in an attack process.

In this paper nmap tool is used to perform these evaluations
restricted only to TCP flag-based scan, but nmap also pro-
vides scans for UDP, ICMP protocols, and even application-
level scanning. The characteristics that can be evaluated from
the target are available services through port scanning.

1) TCP SYN Scan: TCP SYN scan is the most common
scan due to its speed to be performed; on the other hand,
most firewalls detect and prevent it. When not blocked, this
probing provides clear differentiation between open, closed,
and filtered as status for ports.
nmap syntax to perform TCP SYN Scan:

$ nmap —sS —v —n target_ip

4TRAbID dataset: secplab.ppgia.pucpr.br/?q=trabid

ITA, 29 a 30 SET 2020

Instead of performing the traditional three-way handshake
from TCP, it sends an SYN packet from the attacker machine
on this attack. After an SYN/ACK response from the target,
an RST is sent from an attacker, closing the connection but
aware that it is open. If closed, an RST packet is received from
the target, and for a filtered case, no response is provided from
target to attacker.

2) TCP Flag-based Scan: Flag-based scans exploit a TCP
definition to define if a port is open or closed (RFC 793°).
This aspect is that if the packet is sent without flags set SYN,
ACK or RST, then an RST packet is sent for closed ports,
nothing for open or filtered ports, and an ICMP packet for
filtered ports [13].

These TCP flag-based probing attacks can circumvent non-
stateful firewalls. Following attacks based on different TCP
flags configuration is detailed:

XMAS Scan

Christmas (XMAS) scan set only FIN, PSH, and URG TCP
flags.

nmap syntax to perform TCP XMAS Scan:

‘ # nmap —sX —v —n target_ip

NULL Scan
NULL Scan do not set any TCP flags, so flag field is 0x00.
nmap syntax to perform TCP NULL Scan:

‘ # nmap —sN —v —n target_ip

FIN Scan
For FIN scan just the FIN flag is set on TCP Flags.
nmap syntax to perform TCP FIN Scan:

‘ # nmap —sF —v —n target_ip

An example of nmap output:

nmap —sS localhost

Starting Nmap (https ://nmap.org)

Nmap scan report for localhost (127.0.0.1)
Host is up (0.000035s latency).

Not shown: 996 closed ports

PORT STATE SERVICE
21/tcp open ftp

23/tcp open telnet
80/tcp open http
631/tcp open ipp
5432/tcp open postgresql

B. Rules

Based on the presented nmap TCP probing attacks, charac-
teristics of the transmitted packets by attacker were analyzed
to evaluate useful attributes that allow the creation of rules to
block these specifics attempts.

A first attribute that shall be analyzed by the filter is the
flags field from TCP, once most of the considered probing at-
tacks are based on this. Also through Wireshark inspection
(Figure 3) and reference dataset [11] it is confirmed that nmap
probing packets have a fixed window size of 1024 bytes.

Considering these aspects the generic rule is possible:

SREC 793: www.rfc-editor.org/rfc/rfc793.txt

37

Romildo
Placed Image

Romildo
Text Box
ISSN: 1983 7402

Romildo
Text Box
ITA, 29 a 30 SET 2020

Romildo
Text Box
37

ISSN: 1983 7402

ITA, 29 a 30 SET 2020

- Internet Protocol Version 4, Src: , Dst: 192.168.
3 Transmission Control Protocol, Src Dst Port: 257

5] Frame 628: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface ©
- Ethernet II, Src: Vmware_ab:e7:le (80:8c:29:a6:e7:le), Dst: Vmware_18:8c:63 (@0:0c:29:10:8c:63)
200

Fig. 3. Rule verification on [11] dataset using Wireshark

9008 o0 oc 29 10 sc 63 DINTIIED a6 c7 le 08 00 45 00

0010 ©0 28 34 ed 0 00 25 06 de 55 O a8 08 75 cO a8 (4% U

9020 @0 c8 fe ad 64 86 65 e ca 78 00 00 00 00 50 29 .- -d-ec X+

2030 4 00 95 f2 0@ 00 80 00 00 00 00 00 e
Listing 1

EXCERPT FROM LKM/NETFILTER IMPLEMENTATION TO BLOCK
NMAP’S FLAG-BASED PROBING ATTACKS

i

{

}
}

f (tcph—>window == htons(1024))

if (tcph—>fin == 1
&& tcph—>psh ==
&& tcph—>urg == 1)

// XMAS SCAN

return DROP;
} else if (tcph—>fin == 1
tcph—>cwr ==
tcph—>ece ==
tcph —>urg ==
tcph—>ack ==
tcph—>psh ==
tcph—>rst==
tcph —>syn==0)

REERERE

// FIN SCAN

return DROP;
} else if (tcph—>fin ==
tcph—>cwr ==
tcph—>ece ==
tcph —>urg ==
tcph —>ack ==
tcph—>psh ==
tcph —>rst==0
tcph —>syn==0)

REERERE

// NULL SCAN
return DROP;

else {
return PASS;

C. Implementation

The rule presented in the previous section is easy to
deploy on the baseline code of LKM/Netfilter and eBPF/XDP
program, and both available at the GitHub repository [14].

For eBPF/XDP, it requires the LLVM/Clang compiler, and
the load-unload of network interface shall be performed with
ip Linux command. It is essential to highlight that eBPF/XDP
requires a 64-bits Linux system (e.g., x86_64 or aarch64).

D. Performance Evaluation

The performance evaluation of both implementations are
accomplished with iperf3 [15] that is responsible to mea-
sure network throughput for each case, LKM/netfilter
and eBPF/XDP approach. iperf3 is used in the custom
configuration that runs in a time-based evaluation of 10
seconds providing the average throughput. In conjunction with
the average calculation performed by iperf3, the setup runs
20 times to avoid any discrepancies that can be generated by
a single sampling.

nmap is used to confirm that the filtering rule is effec-
tive when both solutions are loaded, LKM/netfilter, or
eBPF/XDP. The confirmation is when the filter is loaded, and
no success is obtained with nmap attempts.

IV. RESULTS

Three configurations are considered for iperf3 perfor-
mance evaluation. The first configuration is the local computer
without any packet filtering application labeled as none. The
next configuration is the LKM/net filter implementation,
and finally is the network device driver with eBPF code loaded
using the XDP.

Figure 4 presents a throughput increase of about 4% when
comparing netfilter to eBPF/XDP approach. This analy-
sis considers a simplified configuration of the local machine
and Virtual Machine communication using virtual ethernet
interfaces.

A second evaluation was performed between two perso-
nal computers, the host computer as iperf3 server run-
ning on Linux Ubuntu 18 with Kernel 4.15 and the client
computer running on MS Windows 7. The communication

38

Romildo
Placed Image

Romildo
Text Box
ISSN: 1983 7402

Romildo
Text Box
ITA, 29 a 30 SET 2020

Romildo
Text Box
38

ISSN: 1983 7402

D 2.54 Gbits/s @
—— 2.64 Gbits/s
Server: 192.168.56.1 Client: 192.168.56.101
Interface: vboxnet0 . Interface: ethl
Ubuntu 18 - Kemel 4.15 2.76 Ghits/s Ubuntu 18 - Kemel 5.0
neffilter eBPF/XDP none

Fig. 4. Results from iperf3

was wired ethernet, and the performance evaluation confir-
med the eBPF/XDP throughput increase of 5% compared to
netfilter deployment.

Also, a local test was performed with nmap to guarantee
that when the filter is loaded (netfilter or eBPF/XDP),
the TCP probing attacks are ineffective.

drwxr@drwxr:~$ sudo nmap -sN localhost

Starting Nmap

© (https://nmap.org) at 2019-07-64 21:46 -63

> Operation not permitted
iplen=40 seq=3912854045 win=1024
Operation not permitted
plen=40 s5eq=3912854045 Win=1024
Operation not permitted
en=40 seq=3912854045 win=1024
n not permitted
3912854045 Win=1024
permitted
2854045 win=1024
n not permitted
0 seq-=3912854045 win=1024
eration not permitted
en=40 seq-3912854045 win=1024
tion not permitted
6 seq=3912854045 win=1024
eration not permitted
=40 seq=3912854045 win=1024
eration not permitted
=31854 iplen=40 seq=3912854045 win=1024

sendto(4, packet,
1:35840 > 127.
endto(4, packe
0.1:35840 > 127.
sendto(a, packet,
1:35840 > 127.0
endto(4, packe
0.1:35840 > 127.
sendto(4, packet,
3

essages now that 16 have been shown. Use -d2 if you really want to see them.

Nmap scan report for localhost (127.0.0.1)
Host is up.
A1l 1000 scanned ports on localhost (127.0.0.1) are open|filtered

Nmap done: 1 IP address (1 host up) scanned in 201.42 seconds
druxrgdrwxr:~S

Fig. 5. Unsuccessful attempt to perform NULL Scan

As illustrated by Figure 5 - for TCP NULL Scan, these
tests confirm the packet filter effectiveness to block the flag-
probing attack. It is essential to highlight that the time required
to perform the scan significantly increased when compared
with nmap usage against a target that does not have a packet
filter deployment.

V. CONCLUSION

This paper presented packet filters’ effective use using
netfilter through LKM and eBPF/XDP to prevent TCP
flag-based probing attacks. It also compared the performance
of both approaches with eBPF/XDP allowing higher through-
put. Although it was not measured, it is crucial to highlight
eBPF/XDP benefits of being faster and less computing con-
suming by not requiring the packet processing into the Linux
kernel network stack compared to netfilter.

In this study, the rules implemented for filtering are deter-
ministic and straightforward do not require complex imple-
mentation. It was not required for eBPF/XDP implementation
to use Maps to interact with user application or tail-code
for more extensive eBPF code deployment. On netfilter
approach, no syscall was required to interface with the user
application layer, and all data required for filtering was
obtained through kernel network structures.

This paper provides an implementation baseline (LKM/-
Netfilter and eBPF/XDP) for packet filtering purposes. Future
works will perform a more rigorous performance evaluation,
considering not just the iperf but also the kernel resources me-
asurement (CPU and RAM usage). Also, to evaluate machine
learning algorithms for packet filtering and its integration with

ITA, 29 a 30 SET 2020

eBPF/XDP implementation to take advantage of performance
gains compared with traditional approaches. Moreover, for
a more agnostic detection approach for probing attacks, the
study has to consider other network protocols, attack tools,
and techniques beyond the analyzed TCP flag-based probing
attacks.

REFERENCES

[1] T. Yadav and A. M. Rao, “Technical aspects of cyber kill chain,” in In-
ternational Symposium on Security in Computing and Communication.
Springer, 2015, pp. 438-452.

[2] G. Weidman, Penetration testing: a hands-on introduction to hacking.
No Starch Press, 2014.

[3] J. Matherly, “The complete guide to shodan: Collect. analyze. visualize,”
in Make Internet Intelligence Work for You. Leanpub, 2016.

[4] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.”
in Lisa, vol. 99, no. 1, 1999, pp. 229-238.

[S] N. C. Team, “The netfilter.org project,” 2001.

[6] M. A. M. Vieira, R. D. G. PacAfico, M. S. Castanho, E. R. S. Santos,
E. P. M. Camara Junior, and L. E. M. Vieira, “Processamento rdpido de
pacotes com ebpf e xdp,” in XXXVII Brazilian Symposium on Computer
Networks and Distributed Systems, SBRC 2019, Gramado, Brazil, May
6-10, 2019, 2019, pp. 1-50.

[7] Cilium, “Bpf and xdp reference guide,” 2019. [Online]. Available:
https://cilium.readthedocs.io/en/latest/bpf/

[8] N. DeMarinis, S. Tellex, V. Kemerlis, G. Konidaris, and R. Fonseca,
“Scanning the internet for ros: A view of security in robotics research,”
arXiv preprint arXiv:1808.03322, 2018.

[9] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast internet-

wide scanning and its security applications,” in Presented as part of the

22nd {USENIX} Security Symposium ({USENIX} Security 13), 2013,

pp. 605-620.

S. Miano, M. Bertrone, F. Risso, M. V. Bernal, Y. Lu, and J. Pi,

“Securing linux with a faster and scalable iptables,” ACM SIGCOMM

Computer Communication Review, vol. 49, no. 3, 2019.

[11] E. K. Viegas, A. O. Santin, and L. S. Oliveira, “Toward a reliable

anomaly-based intrusion detection in real-world environments,” Com-

puter Networks, vol. 127, pp. 200-216, 2017.

S. Barbieri, “Metodo para a deteccao de pacotes produzidos por

scanning tcp,” 2018. [Online]. Available: http://www.bdita.bibl.ita.br/

tesesdigitais/lista_resumo.php?num_tese=75427

G. F. Lyon, Nmap network scanning: The official Nmap project guide

to network discovery and security scanning. Insecure, 2009.

G. d. C. Bertoli, “Netfilter and ebpf/xdp implementation of probing

rule based detection,” https://github.com/gubertoli/ids_ml/tree/master/

src/probing_rule_based, 2019.

[15] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu, “Iperf3:

The tep/udp bandwidth measurement tool,” URL https://iperf.fr, 2005.

[10]

[12]

[13]

[14]

39

Romildo
Placed Image

Romildo
Text Box
ISSN: 1983 7402

Romildo
Text Box
ITA, 29 a 30 SET 2020

Romildo
Text Box
39

