

 Design of DES Encryption Algorithm as Bundled-

Data Asynchronous Pipeline using FPGA

 Diego A. Silva, Duarte L. Oliveira, Gracieth C. Batista
 Instituto Tecnológico de Aeronáutica – ITA – São José dos Campos – São Paulo – Brazil

Abstract Currently, digital systems that are able to meet

major security restrictions are increasingly being demanded,

both in the military and in commercial areas. Data security can

be achieved by cryptographic algorithms. An important

encryption algorithm known as DES (Digital Encryption

Standard) was implemented in Field Programmable Gate Array

(FPGA) in different synchronous architectures. In this paper we

propose an implementation of the DES algorithm in FPGA, in

the asynchronous pipeline style. Comparing with the

implementation in FPGA of two different project styles the

proposal asynchronous obtained an average increase of 14.9%

in throughput and an average reduction of 66.3% in latency

time.

Keywords SCAs, pipeline, data-path, SoC, DPA

I. INTRODUCTION

 In recent decades, there is a strong demand for digital

systems that ensure the confidentiality of information,

whether in processing or data storage. As examples, we have

the purchasing activities on Internet, banking, etc., which

require transmission security and sensitive data storage. The

design of a digital system, meeting these security restrictions,

demands communication protocols and use encryption

methods. These methods are based on the arithmetic, and

focus on hiding data. Currently, there is also a concern on the

inclusion of "traps" in digital SoC (System-on-Chip) systems

design, especially for military purposes [1], for example,

cryptographic algorithms are intensively applied in software-

defined radio, a strategic area in the military sector [2]. We

can also mention aerial drones, which are mobile cyber-

physical systems, with applications in military operations,

package delivery, reconnaissance, etc. There are applications,

where aerial drones must be highly targeted, therefore

insurances. For example, military applications, where attacks

on these drones must be frequent, for that some important

information can be extracted [3].

 Despite the encryption algorithms, implemented in SoCs,

seek to be robust to the attempting of breaching confidential

data, there is a number of techniques that demonstrate,

through physical properties, that is possible to reveal the

secret processed data [4,5]. This class of techniques is known

as Side Channel Attacks – SCA, which extracts sensitive

information based on physical features, such as power

consumption, electromagnetic radiation, processing time,

etc., allowing discovering the information protected by

encryption.

These attacks seek to establish a relationship between the

analyzed physical features and the processed data.

 A cryptographic system typically uses a “word”, called

secret cryptographic key, which affects its efficiency. In

modern cryptographic systems, knowing the key is equivalent

to be able to perform operations on the encrypted system.

Different encryption algorithms have been proposed to raise

the reliability of data security, such as the RSA algorithm

(Rivest Shamir Adleman) [6], TEA (Tiny Encryption

Algorithm) [7], AES (Advanced Encryption Standard) [8]

and DES (Digital Encryption Standard) [9]. The DES

algorithm became one of the most popular algorithms in the

late twentieth century it was developed by IBM with help

from the National Security Agency (NSA) in the 1970s. In

1977 it was adopted as an information processing standard in

USA agencies [10,11]. The security of the DES algorithm lies

in the size of the key and difficulty in decrypting without

knowledge of the key. The operations of DES encrypt and

decrypt is publicly owned. The DES algorithm is relatively

slow if implemented by software, due to the size of the key

and a permutation involving a 64-bit input block.

 Different proposals have been made for the

implementation of cryptographic systems, aiming at a greater

reliability facing to attacks, by hardware. We can cite the

implementations of DES algorithm in the synchronous style

in FPGA (Field Programmable Gate Array) [12-20] or in

VLSI (Very Large Scall Integration) [21,22]. In DSM (Deep-

Sub-Micron) MOS technology, used today, the

implementation of synchronous circuits causes difficulties

related to the global clock signal, for example, clock skew,

high electromagnetic emission, low modularity, high noise.

Asynchronous style is a promising alternative for solving

problems related to the global clock signal. In the

asynchronous style, we have the implementation of Zhang et

al. [23], which works in the QDI class (quasi delay

insensitive) and the work of [24-26] which implements in the

GALS style (Global Asynchronous and Locally

Synchronous).

 This paper proposes a high performance DES

cryptographic processor, which is synthesized on

asynchronous pipeline architecture and prototyped in FPGA.

This proposed architecture consists of eight stages, operates

on the two-phase handshake protocol and is bundled-data, so

the data-path in each stage is synthesized in the conventional

way, that is, single-rail [27]. Comparing with two design

styles, which are synchronous pipeline and multi-point GALS

of [25], the proposed asynchronous pipeline achieved an

average reduction of 66.3% in latency time and an average

increase in throughput of 14.9%.

Diego A. Silva, dasilva@ita.br; Duarte L. Oliveira, Tel +55-12-3947-

6813, duarte@ita.br; Gracieth C. Batista, gracieth@ita.br;

http://www.computer.org/csdl/mags/dt/2011/05/mdt2011050062-abs.html
http://www.computer.org/csdl/mags/dt/2011/05/mdt2011050062-abs.html
mailto:dasilva@ita.br
mailto:duarte@ita.br
mailto:gracieth@ita.br
Romildo
Text Box
122

Romildo
Text Box
ITA, 29 a 30 SET 2020

Romildo
Text Box
ISSN: 1983 7402

Romildo
Placed Image

II. PREVIOUS WORKS

In the end of the 1990s, some works concerning attacks

by means of physical characteristics of devices running

cryptographic algorithms were presented. In 1996, Kocher

[28] reported about the weakness of some algorithms related

to their timing characteristics, like differences in the

encryption time of different keys and plaintexts that would be

exploited for attacks in some processor architectures. He

suggested some countermeasures, as random delay insertion

in the operations and time uniformization of all needed

operations, what would turn the timing characteristics of

algorithms unfeasible to analysis. The attacks based on

timing characteristic were named Timing Attacks [28].

Another work showed the possibility to analyze power

consumption and electromagnetic emission from chips based

on CMOS technology due the switching characteristics of

these devices. This work focused in a class of attacks called

Power Analysis, and brought special attention to the

Differential Power Analysis (DPA), who is simple to be

performed. The authors proposed some countermeasures

against DPAs, like device shielding and noise insertion.

In the beginning of 2010 years, the DPA countermeasures

were divided in strategies of Uniformization, Randomization

and Masking. Soares et al. [24] developed a strategy against

SCAs based on randomization. They implemented the DES

Algorithm in GALS pipeline architecture, using a two-phase

handshaking protocol as an interface protocol between the

synchronous islands and a random clock frequency system

that at each round feed the islands with random clock

frequencies. The handshaking protocol was also used for the

communication between islands and its own clock systems.

The goal of this architecture was hide the leakage of

information by randomization of execution time, provided by

the random clocks, and overlapping of current measurements

caused by the pipeline. This proposed architecture achieved

robustness against SCAs attacks when compared to versions

of the same algorithm implemented in full synchronous and

asynchronous styles [24].

In 2017, a work showed an energy-based attack flow

against the architecture proposed for Soares et al. [24]. This

attack was based on current traces time-alignment and

subsampling, and achieved success to find sub-keys of 2-

stages pipelined GALS architectures. The authors also proved

that this attack flow had relative low computational cost

compared to other previous trials [29].

III. CRYPTOGRAPHIC ALGORITHM: DES

Figure 1 shows the basic flow of DES Algorithm

encryption process. At the beginning of the process, the bits

of the plaintext are permuted, by the Initial Permutation IP

and then divided in two symmetric parts. After this, 16

iterations of a Round Function will be performed, consisting

in nonlinear transformations of one side followed by an XOR

operation. Each round uses a sub-key of 48 bits generated

from an original key of 64 bits in a process called Key

Scheduling. In the end, the right and left sides of the word are

concatenated and another permutation is applied. The

Permutations are simply input bits mapping to predetermined

positions, which are defined in the official documentation of

the DES Algorithm, by the Federal Information Processing

Standard (FIPS). In hardware level, permutations can be

implemented by means of wiring. The same structure of Fig.

1 can be used to perform the decryption process, differing

from the encryption by the use of the sub-keys in a reverse

order of application [30].

Plaintext

IP

L0 R0

f
K1

L1 R1

f
K2

L15 R15

f
K16

R16 L16

Ciphertext

IP-1

Fig. 1. Sequence of DES Algorithm operations.

The block diagram of the Round Function can be viewed

in Fig. 2. This Round Function has four operations:

Expansion Bits, XOR operation, SBOXes and Permutation P.

Like in the case of initial and final permutations, the

operations of Expansion Bits, SBOXes and Permutation are

all defined in the official standard. In the Expansion Bits

operation, a 32-bits word is expanded by a mapping process,

generating a word of 48 bits. An operation of XOR between

this expanded word and the round sub-key is performed in

sequence. Then, the 48-bits word is applied to a set of 8

SBOXes. Each SBOX has 4 rows and 16 columns, where the

addresses are defined by a 6-bits input, so the input word is

divided in 8 sets of addresses. The output of a SBOX is a 4-

bits word defined by the address specified by the input. In

this work, the SBOXes will be implemented by Boolean

functions in a XOR-SOP form that presented better

performance compared to implementations based on Look-

Up Table [31].

f
Round Function,

ith iteration

Ri

Expansion
Bits

Ki

SBOXes

P

fi

Fig. 2. “Block diagram of a Round Function of the DES Algorithm.”

The Key Scheduling is the process where a set of 16 sub-

keys for each round are created from an original key, as

shown in Fig. 3. The original key of 64 bits is permuted in the

beginning of the process, as labeled in PC1, and then divided

in two sub-sets with 28 bits each one, where 8 parity bits are

Romildo
Text Box
123

Romildo
Text Box
ITA, 29 a 30 SET 2020

Romildo
Text Box
ISSN: 1983 7402

Romildo
Placed Image

discarded. At each round, the sub-sets are exposed to left-

shifts, from 1 or 2 positions according to the round number.

After shifting, an operation of permutation is used to deliver

the sub-key to the round function, as defined by PC2. The

Permuted Choices PC1 and PC2 are also defined by standard

and uses only wiring operations. In a pipeline structure with

hardware replication, the left shift operations can be

implemented also by means of wirings, and it is the case of

this work.

PC1

PC2

<<< <<<

PC2

<<< <<<

PC2

<<< <<<

KEY SCHEDULING
Key, 64 bits

K1, 48 bits

K2, 48 bits

K16, 48 bits

Fig. 3. Sequence of operation DES Algorithm Key Scheduling.

IV. PROPOSED ASYNCHRONOUS PIPELINE

 The proposed bundled-data pipeline architecture is

shown in Fig. 4, where the bundled-data style is composed of

N + 2 lines, with N lines related to the data and two lines

related to the request and acknowledge signals, which are

used to carry out the communication. The proposal is made

up of flip-flop D-based registers. At each stage there is a

data-path that is responsible for processing the data. For each

register there is an XNOR port and a control that is an

asynchronous finite state machine (AFSM). The XNOR port

allows the registers to be activated at both edges of the signal.

Between the stages there is a delay element that is defined by

the critical path of the data-path, i.e. the propagation time of

the data-path. The AFSMs are responsible for the

communication between the stages, through the two-phase

handshaking protocol, that is, using input and output request

signals [Ri, Ro] and input and output acknowledgment signals

[Ai, Ao]. The AFSMs and delay elements ensure

synchronization of pipeline operations.

 Figure 5 shows the specification of the proposed control

that was described in STG (Signal Transition Graph). The

STG specification is an interpreted Petri net and was

proposed by Chu [32]. The STG of the proposed control the

input signals are [Ri, Ao] and the output signal is [Ro]. The

control synthesis involves two steps. In the first step, the state

graph (SG) is generated and the property CSC (Complete

State Coding) is checked if it is satisfied, if not, state signals

must be inserted [33]. An SG satisfies the CSC property if

every pair of different states which are assigned the same

binary code enables exactly the same set of non-input signals.

Figure 6a shows the state graph of the control, which satisfies

the CSC property, so it is in conditions to implementation.

The second step is to obtain the output equation Ro, which

must be hazard free.

 Figures 6b shows the extraction of the Ro signal through

the Karnaugh map. The equation of the signal Ro can be

implemented with a C element [33] and an inverter gate, as

shown in Fig. 6c, d. Figure 7 shows the proposed

asynchronous pipeline architecture.

R
E
G
I
S
T
E
R

R
E
G
I
S
T
E
R

R
E
G
I
S
T
E
R

Processing ProcessingInput Output

Ai

Flip-Flop

Ri RiRi Delay DelayRo Ro Ro

AoAoAo
ControlControlControl

Flip-Flop
Flip-Flop

Fig. 4. Proposed linear pipeline architecture.

Ri+

Ao-

Ri-

Ro+

Ri+

Ao+

Ro-

Ro+

Fig. 5. STG specification of control.

0

Ri+

Ri-

Ao+

Ro+

Ao+

Ri-

Ri+

Ao-

Ro+

Ri+

Ao-

Ro-

Ri Ao Ro=000

3

6

4

0

2

4

1

5

7

(a)

Ri Ao
Ro 00 11 1001

0

11

0 0 0 1

0 1 1

Ro = Ri Ao + Ri Ro + Ao Ro

(b)

Ao

Ro

Ri

(c)
C element

C

Ao

Ro

Ri

(d)

Fig. 6. Synthesis: a) state graph; b) map of Karnaugh for Ro signal and
covered; c) logic circuit; d) logic circuit based in C element.

R
E
G
I
S
T
E
R

R
E
G
I
S
T
E
R

R
E
G
I
S
T
E
R

Processing ProcessingInput Output

Ai

Ri RiRi
Delay Delay

Ro Ro Ro

AoAoAo

CCC

Flip-Flop Flip-Flop Flip-Flop

Fig. 7. Proposed linear pipeline architecture.

V. DES ENCRYPTION: ASYNCHRONOUS HARDWARE DESIGN

 The DES_Encryption algorithm was decomposed into

eight stages as shown in Fig. 8. The novelty is the Keyblock

proposal as shown in Fig. 9. In the case of encryption, the

displacements are for left and in the decryption are done to

the right, which ensures that the keys are applied in the

opposite direction as shown [13]. The keys of the previous

Romildo
Text Box
124

Romildo
Text Box
ITA, 29 a 30 SET 2020

Romildo
Text Box
ISSN: 1983 7402

Romildo
Placed Image

round enter the KeyBlock, suffer displacements, which are

basically repositioning the wires, are multiplexed according

to the selection signal MODE (0 = Enc, 1 = Dec) and pass

through a permutation box called PC2, which also is

implemented by means of wire repositioning. From this

permutation box comes the key to be applied in the function

of the round. Figure 10 shows the eight-stage asynchronous

pipeline of the DES algorithm, which follows the proposed

decomposition shown in Fig. 8.

Fig. 8. Decomposition proposal of DES algorithm.

<<< >>>

Ci Ci
28 28

28 28

<<< >>>

Di Di
28 28

28 28

MODE

28

28
28

28

28

28

0 1 0 1

Ci+1

Di+1

PC2

48

Ki
Fig. 9. Proposed scheme for the Keyblock.

Ai

Ri RiRi DelayRo Ro Ro

AoAoAo
ControlControlControl

R
E
G
I
S
T
E
R

D Q

Datapath

Key

Datapath

Round

R
E
G
I
S
T
E
R

D Q

R
E
G
I
S
T
E
R

D
Q

Key

Plaintext

Cyphertext

1 2 9

 Fig.

10. Proposed bundled-data asynchronous pipeline of eight-stage for DES

encryption algorithm.

 VI. SIMULATIONS & RESULTS

 To show the feasibility of the proposed project, the DES

encryption algorithm was synthesized in three styles, in this

case: a) synchronous of four stages; b) multi-point GALS of

[25] that consists of four modules; c) proposed asynchronous

pipeline of eight stages. The three projects were described in

structural VHDL, compiled and synthesized in post-layout in

Intel Altera® tool, Quartus II software, version 9.0, Cyclone

III family, in EP3C16F484C6 [34] device.

A. Simulations

 Figure 11 shows the simulation of the asynchronous

pipeline of encryption DES algorithm (DES_E) with initial

data. Figure 10 shows the simulation of DES_E algorithm

after eight clock cycles. The waveforms are exactly as

expected to the DES_E.

Fig. 11. Simulation: asynchronous pipeline of DES algorithm.

B. Results

 Table I presents the results of the implementation of the

DES algorithm in the versions of synchronous pipeline,

multi-point GALS of [25] and proposed asynchronous

pipeline. Comparing the three styles, the proposed pipeline

architecture had an average penalty of 166.9% and 7.0%,

respectively, in dynamic power and area (LUTs - Look-Up-

Table + FFs) when compared to the other two styles. The

proposed architecture had an average reduction of 66.3% in

latency time and an average increase in throughput (MOPS -

10
6
 operations per second) of 14.9% when compared with

two other styles.

TABLE I. RESULTS: DESIGN STYLES OF DES_E ALGORITHM

DES

Time of
Latency

Number
LUTS

Macrocells
Number

Flip-Flops

268ns

4926

4604

189ns
Multi-point GALS

of [25]

Synchronous Pipeline

fMAX=125 MHz

Dynamic
Power

46.41mw

137.97mw

Asynchronous Pipeline
Proposed

1866

10246192

2095

246.06mw

Throughput
MOPS

105.3

100.0

83.3

75.8ns

Styles
of Design

Romildo
Text Box
125

Romildo
Text Box
ITA, 29 a 30 SET 2020

Romildo
Text Box
ISSN: 1983 7402

Romildo
Placed Image

VII. CONCLUSION

 This work proposed a Data Encryption Standard FPGA-

based implementation based on the device ALTERA Cyclone

III family, in EP3C16F484C6, using a 8-stages asynchronous

pipeline design style and sub-key multiplexing system for the

encryption/decryption modes. At each clock cycle a new key

and a new plaintext can be processed, and at each new cycle

of clock after the pipeline fulfillment a new valid ciphertext

can be obtained in the output. Furthermore, the system can be

switched between the operation’s mode of encryption and

decryption by means of a single signal, which is used to

select between two sets of sub-keys to be applied at each

round, one for encryption and other for decryption. The

implementation uses 6192 LUTs and 1024 D flip-flops, with

a latency time of 75.8ns and a throughput of 105.3 MOPS.

This encryption / decryption rate turns this architecture

suitable to applications like smart cards and satellite

communication, while the flexible change of key can be used

in a key-search machine for the DES Algorithm. This

encryption / decryption rate turns this architecture suitable to

applications like smart cards, satellite communication and

aerial drones, while the flexible change of key can be used in

a key-search machine for the DES Algorithm.

REFERENCES
[1] S. Adee, “The Hunter for the Kill Switch”. IEEE Spectrum, vol. 45-5,

pp. 34-39, Jan 2008.
[2] E. Lussari, et al., “Software-Defined Radio design based on GALS

architecture for FPGAs,” IEEE 29th Symposium on Integrated Circuits

and Systems Design (SBCCI). Pp.1-6, 2016.
[3] M. O. Ozmen, A. a. Yavuz, “Dronecrypt - An Efficient Cryptographic

Framework for Small Aerial Drones,” MILCOM 2018 - IEEE Military

Communications Conference (MILCOM), pp.1-6, 2018.
[4] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and others Systems”. In: 16th International Cryptology

Conference on Advances in Cryptology (CRYPTO’96), pp. 104-113,
Aug 1996.

[5] P. Kocher, et al., “Differential Power Analysis”. In: 19th International

Cryptology Conference on Advances in Cryptology (CRYPTO’99),
pp. 388-397, Aug 1999.

[6] R. L. Rivest , A. Shamir , L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems” Communications of the
ACM, Vol.:21, No. : 2, pp 120-126, Feb. 1978.

[7] D. J. Wheeler, R. Needham, TEA, a Tiny Encryption Algorithm, in the

proceedings of FSE 1994, Lecture Notes in Computer Science, vol
1008, pp 363-366, Leuven, Belgium, December 1994, Springer-

Verlag.

[8] Advanced Encryption Standard (AES). Federal Information Processing
Standards Publication 197, National Institute of Standards and

Technology, 2001. Available from

http://csrc.nist.gov/publications/fips/ fips197/fips-197.pdf.
[9] Digital Encryption Standard (DES). Federal Information Processing

Standards Publication 46-2, National Institute of Standards and

Technology, December 1993. Available from http://www.itl.nist.gov/
fipspubs/fip46-2.htm.

[10] National Bureau of Standard (U.S.), “Data encryption Standard

(DES)”, Federal Information Processing Standards Publication 46,
National Technical Information Service, Springfield, VA, April 1977.

[11] National Bureau of Standard (U.S.),“DES modes of Operation”,

Federal Information Processing Standards Publication 81, National

Technical Information Service, Springfield, VA, December 1980.

[12] D. R. Stinson, "Cryptography. Theory and Practice". 2nd Edition,

Chapman & Hall/CRC, Boca Raton, Florida, 2002.
[13] B. Schneier, "Applied Cryptography Second Edition: protocols,

algorithms, and source code in C", Wiley & Sons, New York,USA,

2nd edition, 1996.

[14] K. Dichou, V. Tourtchine, F. Rahmoune, "Finding the best FPGA

implementation of the DES algorithm to secure smart cards", Electrical

Engineering (ICEE) 2015 4th International Conference on, pp. 1-4,
2015.

[15] K. Wong, M. Wark, M & E. Dawson. "Single-chip FPGA

implementation of the Data Encryption Standard (DES) algorithm". 2.
827 - 832 vol.2. 10.1109/GLOCOM.1998.776849, 1998.

[16] J.P. Kaps, C. Paar. "Fast DES Implementations for FPGAs and Its

Application to a Universal Key-Search Machine". In: Tavares S.,
Meijer H. (eds) Selected Areas in Cryptography. SAC 1998. Lecture

Notes in Computer Science, vol 1556. Springer, Berlin, Heidelberg,

1999.
[17] C. Patterson, "A Dynamic Implementation of the Serpent Block

Cipher", Proc. Workshop Cryptographic Hardware and Embedded

SystemsCHES 2000, pp. 142-155, Aug. 2000.
[18] M. McLoone, J.V. McCanny, "A high performance FPGA

implementation of DES", Signal Processing Systems 2000. SiPS 2000.

2000 IEEE Workshop on, pp. 374-383, 2000.

[19] K. M. A. Abd, H. F. A. Hamed, E. A. M. Hasaneen, "FPGA

Implementation of the Pipelined Data Encryption Standard (DES)

Based on Variable Time Data Permutation", The Online Journal on
Electronics and Electrical Engineering, vol. 2, no. 3, pp. 298-302,

2011.

[20] S. Oukili and S. Bri, "FPGA implementation of Data Encryption
Standard using time variable permutations," 2015 27th International

Conference on Microelectronics (ICM), Casablanca, 2015.

[21] D. Liang, C. Hongyi, “An efficient and scalable VLSI implementation
of DES,” ASICON 2001, 4th International Conference on ASIC

Proceedings (Cat. No.01TH8549), pp.341-343,2001.

[22] S. O’Melia, A. J. Elbirt, ‘Enhancing the Performance of Symmetric-
Key Cryptography via Instruction Set Extensions,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol.18, issue:11,

pp.1505-1518,2010.
[23] Q. Zhang, et al. “Optimization design of a low power asynchronous

DES for security applications based on Balsa and synchronous tools,”

International Conference on Electronics, Communications and
Computers (CONIELECOMP), pp.124-129, 2015.

[24] R. Soares, N. Calazans, F. Moraes, P. Maurine, L. Torres (2011). "A

Robust Architectural Approach for Cryptographic Algorithms Using
GALS Pipelines," IEEE Design & Test of Computers. 28. 62-71.

10.1109/MDT.2011.69, 2011.

[25] T. Curtinha, et al. “FPGA Implementation of Low-Latency Robust
Asynchronous Interfaces for GALS Systems,” IEEE XXV

International Conference on Electronics, Electrical Engineering and

Computing (INTERCON), pp.1-4, 2018.
[26] D. A. Silva, O. Verducci, D. L. Oliveira, “Implementation of DES

Algorithm in New Non-Synchronous Architecture Aiming DPA

Robustness,” IFIP/IEEE 27th International Conference on Very Large
Scale Integration (VLSI-SoC), pp.1-2,2019.

[27] H. Wu, et al. ‘A method to transform synchronous pipeline circuits to

bundled-data asynchronous circuits using commercial EDA tools,”
IEEE International Conference on Electron Devices and Solid-State

Circuits (EDSSC), pp.1-2, 2019.
[28] P. C. Kocher, "Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems". In: Koblitz N. (eds) Advances in

Cryptology — CRYPTO ’96. CRYPTO 1996. Lecture Notes in
Computer Science, vol. 1109. Springer, Berlin, Heidelberg, 1996.

[29] R. Lellis, R. Soares, A. A. Souza. “An energy-based attack flow for

temporal misalignment countermeasures on cryptosystems.” 2017
IEEE International Symposium on Circuits and Systems (ISCAS)

(2017): 1-4.

[30] D. R. Stinson, "Cryptography. Theory and Practice". 2nd Edition,
Chapman & Hall/CRC, Boca Raton, Florida, 2002.

[31] K. Wong, M. Wark, M & E. Dawson. "Single-chip FPGA

implementation of the Data Encryption Standard (DES) algorithm". 2.
827 - 832 vol.2. 10.1109/GLOCOM.1998.776849, 1998.

[32] T. –A. Chu, “Synthesis of Self-Timed VLSI Circuits from Graph-

Theory Specifications,” PhD. Thesis, June 1987, Dep. Of EECS, MIT.
[33] P. Beerel, R. Ozdag and M. Ferretti, “A Designer’s Guide to

Asynchronous VLSI”. Cambridge University Press, p. 337, 2010.

[34] Altera-corporation,2020-www.altera.com.

Romildo
Text Box
126

Romildo
Text Box
ITA, 29 a 30 SET 2020

Romildo
Text Box
ISSN: 1983 7402

Romildo
Placed Image

