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Abstract In the Defense industry, radar target simulations 
are a major point of technologic independence for countries, once 
allows creating and evaluating Radar Signatures of complex 
targets, as aircraft, ships and armored cars, without the need of 
measuring them. It is a possibility of generating enemy’s 
signatures and defining the best approach to react and detect 
them. However, this kind of simulation is expensive, spend a lot 
of computational resources and demands a complex setup. This 
study proposes a proof of concept of a radar target simulation, 
based on a case study of automotive radars using Generative 
Adversarial Networks (GAN): an artificial intelligence technique 
that is used for generating realistic synthetic data. The achieved 
results show that it can generate realistic radar targets using low 
computational efforts, opening a new way to radar target 
simulations: AI-based simulations. Although being based on 
automotive targets, all results can be extrapolated to Defense 
scenarios. 

Keywords  Generative Adversarial Network, FMCW Radar, 
Vehicle Safety. 

I. INTRODUCTION 

Simulations are essential for all kind of complex studies, 
mainly for those in Defense and high added-value scenarios, 
where we do not have all elements, or that show to be very 
expensive to define parameters of operation. Through 
simulations it is possible to generate hypothetical scenarios, 
study them and define operation techniques, strategies, and 
approaches to overcome enemies in the war scenario. Among 
the different ways to simulate complex scenarios, one of them 
is known as radar target simulation, where a physical device, 
which consists of a transmitter and a receiver, generates a radar 
signal based on certain selected parameters. Such an approach 
to simulation is expensive and requires a lot of time and effort 
of those who are interested in running their simulations. There 
are only a few alternatives to this approach to this date, and 
none of them focuses on Defense area, in ostensive literature. 

One of the little explored alternatives for radar signal 
simulations is artificial intelligence, more specifically the so-
called Generative Adversarial Network [1] (or simply GAN). 
GAN is a network composed of Artificial Neural Networks 
that can learn how to generate realistic false (fake) data when 
it is fed with a dataset of examples. The GAN architecture has 
two neural networks: the generator and the discriminator. The 
generator is responsible for generating the “fake” data while 
the discriminator will try to distinguish between real or 

generated inputs. When the generator creates realistic data, the 
discriminator finds a high difficulty to distinguish between real 
and generated, and that is the point where every GAN needs to 
achieve in order to produce realistic results. 

To this date, there are only a few numbers of works 
exploring GANs to radar signal generation. The existing 
approaches are for SAR (Synthetic Aperture Radar) 
specifically for remote sensing [2,3] and a simple approach of 
hidden object reflection [4]. This last one shows a certain 
fragility in the discriminator: the criteria used to make the final 
distinction between real and generated is only the human 
vision [4]. Therefore, authors conclude that the fragilities of 
the network are unknown [4]. 

The contribution of this paper rests on the viability of a 
GAN to generate realistic synthetic range-doppler radar data. 
For that, we used a case study of automotive scenarios, once it 
showed to be easier to find datasets that could be used to train 
the neural network, instead of Defense dataset, that are 
generally confidential and restricted by the governments. The 
results show that the case study and the GAN developed for 
this work its capable of generating visually realistic synthetic 
data, showing that artificial intelligence can be useful to 
simulation environments and even to replace expensive 
simulation setups, avoiding high computational resources. 

The work [2] proposes a GAN that generates simulated 
satellite images. The objective is to supply a need for existing 
data for classification of SAR radar images. This work is 
divided into two parts: through an existing database, a Neural 
Network was created for classifying the objects found in the 
images, and through the same database, a GAN network was 
created to generate simulated images like the images present 
in the database. After these two phases, the generated images 
are added to the database, and the classification part is repeated 
to verify whether the increase in data implies an increase in 
classification accuracy. After doing the classification part, 
now with simulated images, the classification accuracy neither 
increased nor decreased. This implies that the generated 
images were not unrealistic enough to decrease accuracy, nor 
realistic enough to increase classification accuracy. The 
important point of this work [2] for the relevance of the project 
that will be carried out is the realism of the generated images 
and their discriminating network, and not the lack of increase 
in classification accuracy. 
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In [3] an approach focusing on the generation of simulated 
images is proposed. The problem that the work proposes to 
solve is the low precision of the existing simulations for SAR 
radar signals and images. Existing simulations are expensive, 
many of them requiring a very large computational effort and 
still delivering an inaccurate simulation. The proposal of the 
paper is to create an approach for simulations using a GAN. 
This network will learn using real data, and therefore learn to 
reproduce even more realistic data. The discriminator showed 
instabilities during training, sometimes causing the precision 
of the generated images to decrease. The problem was solved, 
but some noise from the radar still hindered the generation of 
more realistic images. The simulated images were tested in a 
CNN classifier and the results were compared with the 
classification of the real images. Classification accuracy on 
simulated images was lower. 

In [4] a slightly different approach from the previous ones 
is presented. In this case it is not image simulation, but the 
radar signal itself. The cited work tries to solve a problem 
about the detection of hidden objects under clothes using a 
radar sensor, mainly for military applications. The work tries 
to create a proof of concept about the generation of simulated 
radar signals from a GAN network. A database was created 
from electromagnetic simulations using the Finite-Difference 
Time-Domain (FDTD) method. A backdrop was created: an 
object that is hidden behind some layers: a jacket, a shirt, and 
an object. Three classifications from the scenario were created: 
large object, small object, and no object. From the database, 
the GAN managed to capture the data distribution well and 
was able to generate simulated radar signals that are realistic 
to the human eye. The work presents a simple (not necessarily 
simplistic) proof-of-concept, with a scenario that is still not 
robust, as this is one of the first works to deal with the 
generation of radar signals from a GAN network. 

In [5] the development of simulated images for snow 
sensor radar is shown. According to the paper, data collection 
over the years from remote sensing was done without an 
adequate classification, so the job of image classification for 
snow radar sensors becomes a difficult job to be carried out. 
One of the alternatives would be to generate synthetic data to 
fill this lack of classification. Data on the ice surface can be 
simulated through a physical simulation, but this type of 
simulation is computationally heavy (a very big effort) and is 
not feasible to produce a meaningful database for image 
classification. To accomplish this purpose, a CReSIS database 
(Center for Remote Sensing of Ice Sheets) with more than 
2,000 images was used. The images generated by GAN had a 
good result compared to the real images, however the absence 
of some important input data caused some images to be 
generated with a lack of some ice layers, however, in general, 
the network was able to produce good results. 

All these works show that Radar Signal Generation plays 
an important role in many areas, from Defense to Automotive, 
showing to be a major point of interest for specialists  

 

 

 

II. THEORY 

A. Generative Adversarial Networks 

The GAN architecture (Fig. 1) consists in two neural 
networks: a generator and a discriminator. The generator 
learns how to create data using a random noise as a input, 
having a dataset (Shown as 𝑋௧௥௔௜௡ in Fig. 1) as output [1]. The 
primary goal of the generator is fool the discriminator with the 
generated data. At the end of the process, if the generator can 
fool the discriminator, it means that the generated data its 
realistic enough to pass as real. In the training, the generator 
communicates with the discriminator to improve the data 
generation. 

 

Fig. 1. GAN Architecture. 

The main task of the discriminator is classifying the 
presented data as real or generated. During the training, the 
discriminator learns how to distinguish data from these two 
categories, calculates the generator loss and uses 
backpropagation to adjust the weights of the network. So, the 
discriminator helps the generator training improvement (Fig. 
2). When the discriminator starts to classify the generated data 
as real, the goal was achieved. The behavior of a GAN is like 
a Turing Test: to be considered a “thinking” network, the 
generator must pass as real to the discriminator. 

Fig. 2. GAN training process. 

This architecture can be used to generate any kinds of fake 
data: texts, audios, music, videos, images, and more [6]. 

B. Frequency Modulated Continuous Wave Radar (FMCW 
Radar) 

      The FMCW radar is a type of a radar sensor that can 
change by being modulated, differently from the simple 
continuous wave radar (CW) [7]. The CW radar has limits: it 
can’t measure the range of target. This problem is caused by 
the lack of the time mark, which allows the system to do its 
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cycle of transmist, receive and convert this process into range 
[7]. The time reference for the measurement of objects 
distance can be generated by using the frequency modulation 
of the transmitted signal [7], as shown in Fig.3. 

 

Fig. 3. FMCW transmit and receive cycle. 

The distance R to the reflecting object can be calculated by 
the following equation (1): 

                              𝑅 =  
𝑐଴ |∆𝑡|

2
=  

𝑐଴ |∆𝑓|

2 ൬
𝑑(𝑓)
𝑑(𝑡)

൰
                          (1) 

Where: 
 𝑐଴ is the speed of light. 
 ∆𝑡 is the time delay (s). 
 ∆𝑓 is the measured frequency difference (Hz). 
 𝑅 is the distance between the antenna and the 

reflecting object (m). 

 
ௗ(௙)

ௗ(௧)
 is the frequency shift per unit of time. 

 

 

Fig. 4. Radar block diagram 

     The radar is basically the transceiver and a control unit 
with a microprocessor (Fig. 4). The transceiver includes a 
transmitter and receiver antennas. A high frequency is 
generated by an oscillator that controls voltage. This 
oscillator feeds the transmitting antenna or amplifies its 
power [7]. The mixer is fed by a part of the high frequency, 
and then converts the received echo signal in the baseband 
[7]. The microprocessor controls the transceiver, converts the 
signal to the digital format, usually with a USB cable [7]. The 
control voltage is provided to the frequency control by using 

a digital-to-analog converter, then, the mixer output voltage 
is converted to the digital format. 

    III. METHODOLOGY 

A. CARRADA Dataset 

The CARRADA Dataset [8] is a database containing about 
80 gigabytes of automotive radar measurements together with 
a camera. From these measurements, an FMCW (Frequency 
Modulated Continuous Wave) radar database was created 
along with its post-processing. About three objects were used: 
cars, bicycles, and cyclists. The results of this collection were 
separated as follows: camera images, range angle sequences 
and range doppler sequences. Each collection of each one of 
the frames has an identifier that synchronizes the images and 
radar sequences (Fig. 5). The collected data was saved in 2D 
arrays in a format called NumPy array, which can be read 
using a python algorithm. In addition, each frame of collected 
data was processed through a Convolutional Neural Network 
(CNN) that detects the present objects in the scene, maps them, 
performs semantic segmentation, and marks the objects in the 
images. This dataset is of great importance for artificial 
intelligence aimed at automotive radars, once databases 
available for FMCW radars are practically non-existent, or 
closed to the public. The database is available for using via 
github. 

 

 

Fig. 5. Camera and range-doppler raw data representation. 

      In the present work, not all measurements of the dataset 
were used, but only the listed below, which involves about 
6.386 radar measurements: 

 Range-doppler raw data representations; and 

 Empty measurements and car measurements. 

       The data needs to be processed previously to fit into the 
neural network. A resize was needed to pass the data through 
the network. The representations were resized from 256 x 64 
to 64 x 64 (Fig. 6). 
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Fig. 6. Resizing data. 

      To train a model that learns the data representation and 
generates realistic synthetic data, the GAN needs a large 
amount of data [9]. The data used in this experiment is not 
enough to train a realistic model. But, according to [9] a 
technique of data augmentation can be used to enlarge the 
dataset. Data augmentation basically is a way to augment the 
dataset applying different kinds of transformations to the data 
and adding those transformed data as new data. For example, 
a new color can be applied to an image, and that new colored 
image as a new data. Every type of data has its adequate 
transformations that can be applied. But to a range-doppler 
representation, a new color cannot be applied, so, to this 
experiment, a series of gaussian noise were applied to the data 
(Fig. 7) and added as new representations. Therefore, the 
dataset achieved 57,474 measurements, what is enough to train 
a good generative model. 

 

Fig. 7. Data with normalization and gaussian noise. 

B. Deep Convolution Generative Adversarial Network  

    The selected GAN architecture is known as Deep 
Convolutional GAN (DCGAN). This type of GAN replaces 
the fully connected layers in the generator with upsampling 
convolutional layers [10]. Mainly, there are three pillars of the 
DCGAN architecture [10]: 

1. Replace pooling operations by downsampling 
convolutions. 

2. Remove fully connected layers after the convolutions. 
3. Use Batch Normalization to help the gradient flow. 

 

Fig. 8. Architecture used in the experiment. 

         The DCGAN uses the unsupervised training, that means 
that the data is not labeled. The DCGAN architecture also uses 
the ReLU activation function in the generator for all layers 
(except the output), and in the output, it uses the Tanh 
activation function. In the discriminator it uses LeakyReLU for 
all layers and the Sigmoid function in the classification. 

IV. EXPERIMENTS AND RESULTS 

      This section presents the setup used in the experiment, the 
metrics to evaluate GAN model, a qualitative analysis of the 
generated data with visual comparation between real and 
generated data and quantitative results using the Geometry 
Score [11] to compare the data distribution of the real and 
generated data. 

A. Experiment setup 

       To accomplish the experiment, a configuration setup was 
built: 

 Google Colab with GPU to train the model. 
 30 epochs of training. 
 Batch size of 128 samples. 
 A learning rate of 0.001. 

B. Finding a metric 

      Finding a metric to evaluate the accuracy of a model is not 
a trivial task, specially when it comes to GAN models and it 
comes more complicated with radar signals. There are a few 
and unsufficient metrics that can evaluate an artificial 
generated radar signal. In the reference [4] authors use a visual 
comparation between the real and the generated data. The 
work [2] uses a CNN classifier to evaluate the model, but this 
method is inadequade to the present experiment: there are no 
label attached to the data itself, therefore impossible to make a 
classification model. Looking at these problems of a good 
metric to evaluate the model, two solutions came up: 
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1. A qualitative analysis by visual comparation, as used in 
[4]. 

2. A quantitative analysis, the geometry score [11]. 

C. Qualitative analysis 

In order to compare the real and the generated data, 4 
representations of each one of them were randomly selected. 
The results are shown in the Figure 9. 

 

Fig. 9. Real data vs generated data. 

    The data used to train the model is a non-processed data, 
therefore the raw data of the radar. The generator also 
generates the raw data from the range-doppler representation. 
    The response shown in the data is the range speed pattern, 
where the x axis is the velocity, and the y axis the range 
(distance from the target). A closer look a generated image is 
shown in Figure 10. 

 

Fig. 10. Artificially generated range-doppler representation. 

     As shown in the Figure 10, the model was clearly able to 
generate a visually convincing  range-doppler response to a 
target. It is possible to see the target and even other object in 
the scene. The model was able to generate a target in a range 
speed pattern visually similar to the patterns in the real data. 
With the output data its possible to see that: 

 There is only one target in the scene. 
 The target is moving relatively to the radar: the velocity 

(x axis) is different from zero (the middle is zero). 
 The data needs to be processed: that “line” in the axis x 

wasn’t supose the be there, the car is a single point object. 

 The response generated by the model is visually similar to 
the real: it could fool the human vision analysis. 

D. Quantitative results 

      In order to complement the visual analysis of the generated 
data, the metric geometry score [11] was selected in order to 
evaluate the precision of the model. 
      The geometry score estimates the quality and diversity of 
the genereted data when compared to real data. It goes through 
the topology of the underlying manifold of the generated data 
samples to check how different the samples are from the 
topology of the real data [11]. 
       This method is based in the probabilistic understanding 
when two datasets 𝑋ଵ and 𝑋ଶ  are given, as shown in the 
equations (2) and (3): 
 
                                    𝐺𝑒𝑜𝑚𝑆𝑐𝑜𝑟𝑒(𝑋ଵ, 𝑋ଶ)                              (2) 

                ෍ ൫𝑀𝑅𝐿𝑇(𝑖, 𝑘, 𝑋ଵ) − 𝑀𝑅𝐿𝑇(𝑖, 𝑘, 𝑋ଶ)൯²

௜ౣ౗౮ ష భ

௜ୀ଴

        (3) 

     
      Where: 

 MRLT is the Mean Relative Living Times. 
 𝑋ଵ  and 𝑋ଶ are the datasets to be compared. 
 𝑖 is the number of suffices. 
 𝑘 is the number of dimensional holes in the 

underlying manifold of 𝑋. In this case k = 1 is used. 
 

      To measure a topological structure, it is important to map 
each point of the dataset. In these points a Čech Complex [12] 
can be used to place balls at each point of the dataset. Mapping 
the dataset, some holes appear, some of them “lives” more, and 
others have a short period of life [12]. The Relative Living 
Times (RLT) is calculated by taking the ratio of the total 
amount of the time that a number of holes appears and the 
maximum value of time [12].  
     In order to calculate the Geometry Score, it is necessary to 
calculate the mean of the RLT (or simply MRLT). In the 
equation (2) The MRLT from the real dataset is substracted 
from the MRLT of the generated dataset. The values are 
summed for each suffice, and the sum is the Geometry Score. 
This method compares the data probability distribution 
between two datasets and how far their topology are from each 
other.  
    In Figure 11 it is possible to see the differences between the 
real and the generated dataset. The MRLT for each number of 
one-dimensional hole (i) is presented. As shown in the Figure 
11 the data distribution of the generated dataset have only a 
few differences between the real dataset. The MRLT of the 
generated data is something about 0.61 with the number of 
zero one-dimensional holes, and the real dataset has a MRLT 
of 0.9 with the number of zero one-dimensional holes in the its 
topology. 
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Fig. 11. MRLT of real and generated data. 

With the MRLT, now it is possible to calculate the 
Geometry Score. The work [11] presents results using the 
MNIST Dataset hand written digits. The scores for each 
categorie varies from 0.47 to 22.8, being the lower value the 
best score. The closer to zero the value of the score, the more 
similar to the real topology. The score calculated for this 
experiment was 0.103.   

With these results in mind, its possible to conclude that: 
 

1. The GAN model was able to generate data with a topology 
similar to the real one; and 

2. The parcial results of this study shows that AI can 
generate realistic data and improve high level simulations. 

     
The Geometry Score does not evalute visual aspects of 

the generated data and nothing sugests that if the topology of 
data is near to real, then the image should be similar to the real 
ones [12]. That’s why in this study two methods were used, a 
qualitative, to evalute the visual aspects, and a quantitative. 
Those two combined can give a good evaluation for the 
generative model. 

It is important to say that these results are still preliminar, 
and therefore not conclusive. Despite the fact that the GAN 
model showed potential to create realistic radar data, the 
scenarios used in this experiment were simple, with just one 
object, few background noise and the unsupervised learning 
was used. New studies are needed to evaluate how a GAN 
model would behave in the presence of more complex data, 
with multiple objects in the scene, noise and very different 
targets. 

VI. CONCLUSIONS 

      This article assessed the viability of Generative 
Adversarial Networks to generate radar range-doppler 
representations. The results shows the the generative model 
was able to create visually realistic radar data that is able to 
fool the human eye and topological similar to the real data.     
Despite the fact that this is a initial study, the model showed a 
high potential to generate realistic radar data. 
      The GAN architecture can be used in radar simulations. 
The model created can be saved and used elsewhere with low 
computation costs when compared to a normal simulation 
setup. It takes a lot of computational effort to train the model, 
but once the model is trained, it can be exported and used with 
lower computation resources. This opens a way to improve 

radar simulations with artificial intelligence. Hopefully, new 
models will be developed with more complex data and will be 
able to generate scenarios with more targets, noise and 
different objects. 
    In future works, a Conditional GAN (CGAN) will be 
explored: this one can generate data according to a label. The 
dataset used is labeled with different categories, so the model 
learns to generate a data with a category input. For example: 
The user could pass as input “car” and the model would return 
a range-doppler represention of a car. 
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