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Abstract—ODbject detection in aerial images (ODAI) is an
important task in computer vision and has applications in
several areas, such as defense, environmental monitoring, land
use surveillance and even track-ing of maritime routes. Recently,
researchers directed their efforts to the ODAI, which requires
detectors capable of dealing with arbitrary orientations, large
variations in aspect ratios, densely clustered objects, multiple
classes and instances per image. Our work aimed to detect
planes, ships, harbors, storage tanks and helicopters that are
relevant to defense systems. Such defense-related objects may
present special challenges for detection and a reliable detector
may be very useful as information source for defense systems. We
have used publicly available aerial images and implemented some
detectors based on Rotation-equivariant Detector - ReDet, which
presented a very good performance for a broad class of objects.
We tested such detectors using only defense-related objects. Our
tests included dataset with and without data augmentation. The
results achieved are consistent with the results published in some
previous competitions.

Index Terms—Object detection in aerial images, Earth vision,
Rotation-equivariant detector.

I. INTRODUCTION

Object detection in aerial images (ODAI) [1] is applicable in
areas of defense, environmental monitoring, land use control
and tracking of maritime routes. ODAI gained greater attention
from researchers after convolutional neural networks achieved
high levels of accuracy with natural images [2] and after
sufficiently large datasets [1], [3] were made available for the
training of detectors.

Object detectors with the highest accuracies, such as the
Rotation-equivariant Detector - ReDet [4] and detectors that
implement or Regions of Interest Transformer [5], work in two
stages.

In the first stage, an image scan is performed to select
a large number of regions that may contain objects of the
classes to be detected, considering pre-established anchors in
terms of scales and aspect ratios. The detector stores regions
with the intersection over union (/oU) metric greater than an
established threshold. The IoU metric is calculated according
to the equation below:
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B,, means the bounding box of a prediction and B,; means
the bounding box of a ground truth [5]. The ground truth is
available in the The large-scale Dataset for Object deTection
in Aerial images (DOTA) training and validation data annota-
tions.
In the second stage, the detectors analyse each proposed
region and perform the classification of existing objects and
their locations in the image [6].

In the detection of objects in natural images the location is
performed with horizontal detection contours, called horizontal
bounded box - HBB, while the task of detecting objects in
aerial images is performed with HBB and also with oriented
bounded box - OBB. The objective of OBB is to avoid
ambiguities in the tasks of classifying and locating objects
[5]. The detection performed with OBB is the most indicated
when there is agglomeration of instances in the same image,
which is common in the case of some classes, such as vehicles,
trucks, ships, planes and helicopters.

The automatization of the defense-related object detection
process is essential due to the territorial dimensions of Brazil,
the fifth largest country in the world in territorial area [7], with
more than 15,700 km from land borders [8]. Even a large
number of experts locating and classifying objects in aerial
images obtained by planes, drones and satellites constitute a
time-consuming and inefficient solution.

The application of a high accuracy detector in defense-
related classes is the main contribution of this work, as it can
accelerate decision-making in security and defense operations.

Automating the detection of defense-related objects can
significantly decrease the processing time of aerial images.
For example, to locate and classify suspicious objects, such
as river harbors used to support the trafficking of narcotics
or minerals in the Amazon. In other words, automatization
improves the command and control cycle performed during
military operations [9].

To illustrate the results that can be achieved with a high-
precision object detector, with defense-related classes, we
performed two trainings with ReDet, with and without data
augmentation, using the DOTA-v1.5 dataset.

II. BACKGROUND
A. Dataset DOTA

The large-scale Dataset for Object deTection in Aerial
images, DOTA, was produced by researchers at Huazhong
University of Science and Technology. In its first version, it
contained 2,806 images, 15 classes and 188,282 instances [3].
It was built to boost research with object detection, in the area
of remote sensing, also called Earth Vision.

The detection of objects in natural images had advanced
a lot with the use of large datasets, such as MSCOCO [10],
ImageNet [11] e Places [12]. However, these datasets are not
suitable for training object detectors in aerial images, since
they do not contain OBB annotations and they don’t have
instances with wide variations in scale, orientation and aspect
ratios.



The construction of the DOTA dataset considered the fol-
lowing requirements:

e A large number of images;

« Many instances per categories;

o Properly oriented object annotation; and
o Many different classes of objects.

At the time of publication, the DOTA-v1.0 was the largest
annotated object dataset with a wide variety of categories.

The DOTA-v1.5 dataset is an enhancement of DOTA-
v1.0. The DOTA-v1.5 uses the same images as DOTA-v1.0.
However, it gained a new category, container cranes. The
development team also added the extremely small instance
annotations (with less than 10 pixels). It contains 403,318
instances in total [13].

B. Rotation-equivariant Detector

The Rotation-equivariant Detector - ReDet [4] is an oriented
object detector that reached the state of the art, in February
2021, on the test data of the DOTA-v1.5 dataset.

ReDet incorporates rotation-equivariant networks into the
backbone instead of traditional convolutional neural networks
to extract the features because the regular CNNs are not equiv-
ariant to the rotation. That is, compared with convolutional
neural networks, which share translation weights, rotation-
equivariant networks share translation and rotation weights.
ReDet also uses ResNet with Feature Pyramid Networks - FPN
[14] as the backbone to implement a rotating equivariant back-
bone network, named Rotation-equivariant ResNet (ReResNet)
so to extract the features of the rotation equivariant, which can
accurately predict the orientation and significantly reduce the
model size.

In addition, the ReDet has a novel Rotation-invariant Rol
Align (RiRol Align), which produces Rol-wise rotation-
invariant features from rotation equivariant feature maps.

Compared with ordinary backbones, the rotation-equivariant
backbone has the following advantages:

o Higher degree of weight sharing;
o Enriched orientation information; and
o Smaller model size.

The ReDet achieved mean Average Precision (mAP) of
66.86 on the test data of the dataset DOTA-v1.5, when trained
without data augmentation (single-scale), and reached mAP of
76.80, when trained with data augmentation (multi-scale).

C. Related Works

In the research to prepare this article, we did not find
similar works focusing on the detection of defense-related
objects using DOTA data. However, there are publications that
concentrate detections on the class vehicles and planes [15],
[16], or only on the class planes [17], using the UCAS-AOD
dataset [18].

There are publications on the detection of objects of the
class ships [19], [20], [21], [22], annotated with OBB in the
HRSC2016 dataset [23].

III. DEFENSE-RELATED OBJECTS

When evaluating the DOTA-v1.5 dataset, the defense-related
classes considered most important for the specific context of
Brazil were: harbors, ships, storage tanks, planes and heli-
copters. These classes are directly related to the sovereignty
of airspace, the logistics of illicit activities in border regions
and the country’s critical infrastructure.

A. Harbors

This object category is a defense-related class because small
harbors, used for small ships, are also included in the dataset.
Small harbors can support vessels used for drug trafficking
and support illegal mining activities.

The detection of this type of object in aerial images can
contribute to the planning of joint operations carried out with
the participation of the Armed Forces, Federal Police and
government agencies [24].

B. Ships

Similar to harbors, ships support drug trafficking and illegal
mining. In addition, its detection is very important for the
defense of the integrity of a country, as it can help the tracking
of sea and river routes.

An efficient algorithm could have located the origin of the
oil spill that occurred in 2019 [25], as the selection of vessels
sailing with the transponder off can direct the inspections to
be carried out by the Navy and mitigate the risk of similar
occurrences on the Brazilian coast.

C. Storage Tanks

Storage tanks are fundamental elements in the logistics of
a country. Typically, its location is associated with a refinery,
a maritime oil terminal or the ends of pipelines.

These types of structures are part of a country’s critical
infrastructure and receive special attention from a nation’s
security forces [26].

D. Planes and Helicopters

As well as ships, planes and helicopters transport drugs
and precious metals. The rapid detection of these objects in
aerial images is essential for successful ground inspections and
interceptions [27].

IV. TRAINING PROCESS

The ReDet detector training process requires a computer
equipped with at least one graphics processing unit (GPU),
with a minimum of 12 GB of memory, compatible with the
Compute Unified Device Architecture (CUDA).

The memory requirement stems from using the GPU with
the CUDA and the Pytorch library to process a large volume
of data. Attempts to train computers equipped with lower-
capacity GPUs resulted in repeated out-of-memory (OOM)
failures, even with adjustments to data batch sizes.

In addition, the computer must have at least 260 GB
available for storage, which is the space occupied by the
dataset prepared for training without data augmentation and
with data augmentation.



After setting up the environment [28], successfully com-
piling the CUDA samples and downloading the DOTA 1.5
dataset, it is possible to test the operation with the execution
of the constant code in demo_large_image.py, which uses the
model trained by the project developers.

If the tests were successful, the next step is to prepare
the images for training. In this step, the images are divided
into standardized 1024 x 1024 images, with an overlap of
200 pixels, in the case of training without data augmentation,
and with an overlap of 512 pixels and multiple scales in
the factors of 0.5 and 1.5, in the case of training with data
augmentation. At the end of the data preparation process, the
directory structure must be identical to the one mentioned on
the project website [28].

The training execution is performed according to the combi-
nation of pre-trained residual network - ResNet selected as the
detector backbone, according to the network that addresses the
scale variations of the instances, called neck, according to the
network that selects image regions that are likely to contain
instances, called the head, and according to the combination
of the number of GPUs and number of the images per GPU.

The combination of the number of GPUs and the number
of images per GPU establishes the batch size, used as a basis
for setting the learning rate [29].

After training is complete, it is necessary to verify that the
model file was created correctly, and then proceed to inference
on the test set.

At the end of the inference, the model generates a file
with contour detections for each class. As the DOTA test data
does not contain ground truth annotations, the operator will
be able to evaluate the new trained model by submitting the
files with the detections for each class to the evaluation server
maintained by the developers [13].

The evaluation results contain the average precision
achieved by the model in each class and contain the mean
average precision, called mAP. In calculating the average
precision, the division of the intersection between the predic-
tion and the ground truth by the union of the prediction and
the ground truth (/oU) and the correct classification in the
prediction is considered.

V. RESULTS OBTAINED FOR THE DEFENSE-RELATED
CLASSES

The results obtained in the complete training with single-
scale (without data augmentation), using a node with 2 x CPU
Intel Xeon Ivy Bridge 2.4GHZ, 64GB DDR3 RAM, and 2 x
Nvidia K40, for the defense-related classes are in Table 1.

The difference column confirms that the results obtained in
our training were consistent with the best published results [4]
up to March 2021.

However, data augmentation is fundamental to obtaining
better results.

Therefore, new training attempts with data augmentation
were performed, also using a node with 2 x CPU Intel Xeon
Ivy Bridge 2.4GHZ, 64GB DDR3 RAM, and 2 x Nvidia K40.

The results with data augmentation are in Table II. Data
augmentation significantly improved Average Precision (AP).

The table III details the percentage gain for each class,
with emphasis on the storage-tank class, where the data
augmentation provided a 20,28 % gain.

In addition to the numerical results, to emphasize the
importance of data augmentation, we present the results in
test images of the DOTA-v1.5 dataset.

A. Results for Harbors Class

The Fig. 1 contains the first example of the results for the
harbors class.

The prediction, with the single-scale model, did not detect
all harbors. In addition, it also classified a harbor as a plane.

On the other hand, with the multi-scale model, all harbors
were detected, despite a positive-negative detection for harbor
class and one for plane class.

The Fig. 2 contains the second example of the results for
the harbors class.

In the second example, the single-scale model detected four
harbors as being just one, two other harbors as being one, and
it did not detect the harbor next to the largest boat in the
image. With the multi-scale model, detection failures did not
occur.

B. Results for Ships Class

In the first example of the ships class, in Fig. 3, the single-
scale model failed to detect fifteen instances, including small
ships. With the multi-scale model, the detector failed in nine
instances.

In the second example of the ship’s class, in Fig. 4, the
single-scale model failed to identify a parking lot and the
streets around it as a ship. The multi-scale detector did not
make the same mistake.

C. Results for Storage Tanks Class

In Fig. 5, the single-scale model incorrectly located three
buildings as small-vehicles.

TABLE I
SINGLE-SCALE RESULTS

Class AP Train (ours) | AP ReDet | Difference (%)
Harbors 74,0788 73,3601 0,97965
Ships 88,6530 80,9204 9, 5558
Storage-tanks | 64,5253 68,6393 —5,9937
Planes 80,6705 79,2033 1,8524
Helicopters 67,9064 63, 3306 7,2253
TABLE 11
MULTI-SCALE RESULTS

Class AP Train (ours) | AP ReDet | Difference (%)
Harbors 77,9017 78,3211 —0,5354
Ships 89,9945 90, 0025 —0,0089
Storage-tanks | 77,6117 75,3295 3,0297

Planes 88,0037 88,5074 —0,5691
Helicopters 78,6568 76,0987 3,3616




TABLE III
GAINS WITH MULTI-SCALE

Class Gain (%)
Harbors 5, 1606
Ships 1,5132
Storage-tanks | 20,2810
Planes 9,0903
Helicopters 15,8312

With the multi-scale model, the detector did not repeat the
error. Both models correctly identified the storage tanks.

In Fig. 6, the single-scale model failed to detect one of the
tanks and classified smaller storage tanks as small-vehicle.

With the multi-scale model, the detector did not repeat the
errors but also did not detect smaller storage tanks.

D. Results for Planes Class

The Fig. 7 contains the first example of the results for the
planes class.

The single-scale model did not detect any of the seven
instances in the image.

On the other hand, in Fig. 7, the multi-scale model found
four instances of the plane class and one false positive.

In the second example of the planes class, the single-scale
trained model detected only one of the five instances in the
image.

With the multi-scale model, the detector correctly located
the five instances.

E. Results for Helicopters Class

In Fig. 9, the single-scale model detected only two of the
seven instances in the image. The model trained with data
augmentation found seven instances.

Both models doubly detected one of the helicopters as also
being an airplane.

In Fig. 10, the detector failed to locate five of the eighteen
helicopters in the image. Furthermore, with the single-scale
model, eleven instances were incorrectly classified as ships.

With the multi-scale model, the detector located the eighteen
instances, with only one of them doubly classified as an
airplane.
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Multi-scale

Fig. 1. First example of the results for the harbors class.

Multi-scale

Fig. 2. Second example of the results for the harbors class.
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Fig. 3. First example of the results for the ships class.
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Fig. 4. Second example of the results for the ships class.
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Fig. 5. First example of the results for the storage tank class.
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Fig. 6. Second example of the results for the storage tank class.
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Fig. 7. First example of the results for the planes class.

Single-scale Multi-scale

Fig. 8. Second example of the results for the planes class.

VI. CONCLUSION

The work presented average precision similar to the best
published results [4] up to March 2021. In addition, the results
presented in this work emphasize the importance of data
augmentation in the training process of object detectors in
aerial images. In the specific case of defense-related classes,
the difference was very significant, especially when verifying

the results in the images.

Single-scale Multi-scale

Fig. 10. Second example of the results for the helicopters class.

plane 0.200

The average precision (AP) values achieved are high. How-
ever, as in the case of harbors and helicopters, with 77.90
and 78.65 AP, respectively, algorithms and methodologies
can still be researched to achieve higher values. In future
works, it is possible to evaluate the impact of fine-tuning the
hyperparameters used in ReDet in the eventual gains obtained
in the defense interest classes. To guide fine-tuning, we are
developing a methodology based on the design of experiments,
similarly to a case study carried out with random forest [30].
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