
FPGA-Based Implementation of a Multichannel
FFT Parallel Processor

Canisio Barth1, Edgard Cansio1
1Navy Research Institute, Rio de Janeiro/RJ – Brasil

Abstract— A flexible and scalable architecture for a multichan-
nel fast Fourier transform (FFT) processor, to be implemented
on field-programmable gate arrays (FPGAs), is proposed in
this paper. The main purpose is to evaluate the feasibility of
a design that uses multiple FFT intellectual properties (IPs)
to process small portions of a larger signal. Additionally, this
work aims to explore the parallelism and high-speed processing
intrinsic to an FPGA in the context of electronic warfare
applications. Therefore, this study intends to provide a solution
capable of straightly interact with the high throughput originated
by radio frequency front-ends, and quickly supply frequency
domain information of the incoming signals to the detection and
estimation units. The proposed architecture was implemented
and tested on a Zybo Z7-20 development board. The experiments
show that the parallel bank of FFT IPs is realizable and in fact
delivers higher performance when compared to a software-based
implementation.

Keywords— field-programmable gate array, fast Fourier trans-
form, parallel architectures.

I. INTRODUCTION

In electronic warfare (EW) state of the art, digital recei-
vers are being widely applied for detecting, estimating and
classifying incoming radio frequency (RF) signals from radar
emitters. An example of wideband digital EW receiver is given
by [1], whose only analog components (following the antenna)
are the low noise amplifier and the down-conversion mixer.
After digitization, the signal is processed by a spectrum analy-
zer and a parameter encoder uses the frequency information
to create a pulse descriptor word (PDW). Consecutively, the
PDW is applied in the transmitter identification. An even more
audacious approach is also presented by [1], where the down-
conversion stage is removed, creating the Direct RF Sampling
receiver.

Besides upgrading sensibility aspects, processing data as
soon as possible and increasing throughput are desirable
requirements due to the time-sensitive nature of EW devices.
Therefore, the use of field-programmable gate arrays (FPGAs)
is an interesting solution that provides high processing capa-
bilities at relative low cost when compared to application spe-
cific integrated circuits (ASICs) [2]. The ubiquity of FPGAs
in EW and radar research, either for control or processing, is
evident. Use cases are shown in [3]–[5] and their references.

Furthermore, analyzing radar signals not only on time
domain but also on frequency domain brings significant
enhancements in the capabilities of EW receivers, turning
easier and more accurate the measurements of pulse widths,
instantaneous frequency, amplitude, noise identification and

C. Barth, canisio@marinha.mil.br; E. Cansio, ed-
gard.cansio@marinha.mil.br. This work was funded by the Navy Research
Institute - Brazil, through the project MAGE MK3.

separation of time-coincident incoming pulses [6]. An exam-
ple of frequency analysis applied to EW is found in [7],
where the frequency domain is used to extract changing pulse
characteristics and to identify agility of radar signals based on
a joint time-frequency representation (TFR), constructed from
short time Fourier transforms (STFTs).

Therefore, given the necessity of obtaining the frequency
parameters as faster as possible in a digital EW receiver,
the objective of this work is to assess the feasibility of an
FPGA-based fast Fourier transform (FFT) processor, compo-
sed of a bank of parallel STFTs. In this way, the proposed
design can be integrated with the spectrum analysis stage of
a wideband receiver similar to that suggested by [1].

The problem of reducing the computation time when extrac-
ting time-frequency information has been addressed in previ-
ous research. A low-complexity and efficient implementation
of the STFT is presented in [8], however, it differs from the
work presented here for two reasons: first, it requires specific
window functions for the STFT; second, the proposed scheme
was simulated in software and not implemented on an FPGA.

To develop and verify the FFT parallel processor suggested
in the present work, two main components are employed:
an FPGA evaluation board and the MATLAB computing
environment. The board — in conjunction with its software
framework — is used to implement and run the low-level
processing in a combination of custom hardware description
language (HDL) entities and intellectual properties (IPs),
being the latter provided by the FPGA vendor. The MATLAB
environment is applied in the input samples generation and
output analysis, using TFRs of the data processed by the
FPGA.

This paper is organized as follows: section II presents
a summarized background on the Fourier transform (FT)
and its expansions in the context of a digital computer
implementation; section III describes the implementation of
the proposed architecture in the FPGA-related environment;
section IV discusses the results of the proposed design and its
outputs when exercised with test signals; Finally, conclusion
remarks and suggestions for future works are presented in
section V.

II. FOURIER TRANSFORM AND DIGITAL SIGNAL
PROCESSING BACKGROUND

The Fourier transform (FT) is a mathematical process that
relates the time-domain description of a signal to an equivalent
frequency-domain representation. Specifically, the FT reveals
what frequency components are present in the signal and their
respective amplitudes and phases [9]. The spectral analysis
based on the FT is primarily linked to the stationary signal

                                                             ISSN: 1983  7402                                          ITA, 27 a 29 SET 2022 
 



concept. However, the non-stationary nature of real-world
signals introduces limitations to this analysis, which requires
alternatives for the examination of the time-changing behavior
of the signals [10].

A. Short time Fourier transform

One of the techniques used to overcome these limitations
is the short time Fourier transform (STFT), where the time
signal is divided into small segments of equal duration with
the FT is applied separately to each segment. Thus, each
local frequency spectrum can be viewed as a function of time
and plotted as a spectrogram. This process is mathematically
defined in [11] by combining the Fourier integral with a
cut-off function known as “window”. Due to the consecutive
transformations over time, the STFT is also referred as a
“sliding window FT”.

In the context of the digital signal processing (DSP), the
time-frequency analysis must occur on discrete data for both
time and frequency variables, which leads to the definition of
the discrete Fourier transform (DFT) [12]. Similarly, the STFT
function becomes a “sliding window DFT” and its output has
two independent discrete quantities for time and frequency.
Thus, if x is a real-valued discrete-time signal of length L,
and w is a discrete window function of length N , the discrete
STFT X of signal x is

X(m, k) ≜
N−1∑
n=0

x(n+mH)w(n)e−j(2π)k n
N (1)

where:
H ∈ N — hop size. This parameter defines the extent

in which w is shifted along x.

m ∈ [0,M ] — frame index.

M = ⌊L−N
H ⌋ — maximal frame index. M is also used to

contain w inside the time range of x.

k ∈ [0, N − 1] — frequency bin. The bin k = ⌊N
2 ⌋ corres-

ponds to the Nyquist frequency.

n ∈ [0, N − 1] — discrete-time index variable.

w — window function. e.g., a rectangular win-
dow w(n) = 1 for all n.

Therefore, X(m, k) corresponds to the kth complex co-
efficient of the mth frame, whose unit is the same as the
input signal x. In other words, each time frame m in (1)
represents a spectral vector of size N comprised of the coef-
ficients X(m, k). In conclusion, the computation of a spectral
vector is equivalent to a size N DFT and can be efficiently
accomplished using the fast Fourier transform (FFT).

B. Fast Fourier transform

Successively to the discrete definition, a class of highly
efficient methods for the computation of the FT is derived
from the DFT: the fast Fourier transform (FFT) algorithms.
The most popular FFT algorithm, attributed to Cooley and
Tukey [13], factorizes a size N transform into smaller DFTs,
which are then recursively factorized. This process also takes
advantage of the symmetry and periodicity of the complex

exponential [12] combined with sequential multiplications
by a “twiddle factor” [14]. The FFT performance is further
enhanced by setting N to a power of 2 or 4 (referred to as
radix-2 and radix-4, respectively), which allows for additional
simplifications in the computation process [2].

It is worth mentioning that the enhancements of the FFT
reduce the complexity of the algorithm to O(Nlog2N), as
opposed to the direct implementation of the DFT, that has an
order of O(N2). Thus, since the STFT requires an FFT of size
N for each frame index m, its complexity is O(MNlog2N)
[8]. Apart from this, given that the FFT algorithm consists of
successive multipliers and adders, it is particularly well suited
for being implemented by FPGA’s typical hardware resources,
such as DSP slices, look-up tables (LUTs) and block random
access memorys (BRAMs).

III. IMPLEMENTATION

This section presents the implementation of the proposed
architecture. Firstly, general features and limitations of the
components used in this study are discussed. Some important
entities developed in VHDL are also explained (i.e., interfaces,
a control unit to organize and route samples to the transform
bank, and a custom module to instantiate the FFT IPs).
Secondly, parameters for transform size, sample size, FFT
topology, number of channels and parallel IPs are defined
for the tests. The design is synthesized and implemented on
the Zybo FPGA and resource utilization is evaluated. Finally,
procedures for output extraction and post-processing analysis
using MATLAB are described.

Although some parameters are chosen at this point of the
work, it might also be observed that the architecture is flexible
because its components were programmed to be as generic
as possible. Consequently, all sizes related to the inputs and
their transforms as well as the amount of parallel FFT IPs
are scalable. So, the maximum value of a given parameter
depends exclusively on the resources offered by the target
device.

A. Firmware Architecture Description

The target device used to develop and further evaluate
the performance of the FFT processor was the Digilent
Zybo Z7-20 Development Board [15], that presents a Xilinx
Zynq-7000 family [16] as its central element. The Zynq-7000
is a system-on-a-chip (SoC) family that has two main pro-
grammable areas: processor system (PS) and programmable
logic (PL). In the present work we intend to use only the PL
side of the Zybo, which consists of an FPGA element based on
the Artix-7 XC7Z020 [16]. Thus, the design consists only of
a firmware layer and has no embedded software on PS. The
development environment used in the project flow (coding,
synthesis, programming, debug and analysis) was the Vivado
Design Suite [17]. Fig. 1 depicts an overview of the firmware
architecture implemented on the Zynq-7000 PL.

Considering that the Zybo board does not have a high-speed
RF front-end and hence is unable to perform analog-to-digital
conversion of external signals, the MATLAB software was
used to generate discrete-time signals that supply the FPGA
hardware. Each sample of the generated signal represents a
quantized voltage, which is coded as a 16-bit two’s comple-
ment number — also known as Q0.15 format [2] — and

                                                             ISSN: 1983  7402                                          ITA, 27 a 29 SET 2022 
 



Fig. 1. Firmware architecture.

stored on the rom wrapper entity, comprised of two read-only
memories (ROMs) IPs named as “Block Memory Generator
(8.4)” in Vivado IP catalog, being one ROM element for each
processing channel and one position per sample. Each ROM
has 24,576 positions depth by 16-bit width.

The following stage is a full custom entity named as
sample ctrl, which performs both ROM data consumption and
control of data distribution for fft wrapper. The sample ctrl
entity access both ROMs simultaneously with the same se-
quential addresses until the last memory position, equivalent
to the last sample of each channel. Incoming samples are
delivered to the demultiplexer data input, whereas its selector
input is driven according to an internal counter managed
by sample ctrl. The internal counter function is to change
samples route, by means of the demultiplexer selector input,
at each 8 KSa section, since there is needed three 8 KSa dual-
channel FFT to settle the 24 KSa input signals. Fig. 2 depicts
the samples distribution.

Fig. 2. Samples distribution scheme.

The main hardware entity of the current application is the
arrangement of FFTs fft wrapper. This entity is comprised
of multiple identical “Fast Fourier Transform (9.1)” [18] IP,
available in Vivado IP catalog, which is capable of performing
frequency transforms of signals from 8 to 65,536 samples,
coming from up to 12 independent channels. Input data is
received by the FFT IP through a serial synchronous inter-
face, whose width is designed to support real and imaginary
components of all input channels in a multiplexed scheme.
As the samples are arriving, an internal buffer is filled up to
reach a number of samples per channel equal to the configured

transform size. At this moment, when the input buffer is full,
the IP starts the transform procedure.

Because an output interface or a memory map to the
SoC PS were not implemented, an integrated logic analyzer
(ILA) [19] was chosen as the way to monitor and collect
data processed by the FPGA, which is then exported to the
computer by means of the Zybo’s JTAG interface.

B. FPGA Implementation

With the intend to test the architecture, each FFT IP was
configured to have two independent input channels with trans-
form size NFFT = 8,192. For the current implementation, this
number of points leads to sufficient frequency resolution for
input signals whose bandwidths are up to 1 GHz (sampled
at some gigahertz, e.g., 2 to 5 GHz). Moreover, these are
considered reasonable ranges for down-converted signals in
EW systems. Given that it is required to design a fast hardware
to perform the FFT, radix-4 was the selected topology for the
IP core. Although this implementation requires more logical
resources, it presents the lowest latency when compared
to other options offered by the design tool. According to
Vivado’s predictions, there is a trade-off between resources,
latency and FFT topology, as can be seen in Table I.

TABLE I

HARDWARE RESOURCES AND LATENCY REQUIRED BY EACH FFT

TOPOLOGY FOR NFFT = 8,192 SAMPLES

Topology DSP Slices BRAM Tile Latency (clock cycles)
Radix-4 18 38 30,864
Radix-2 6 34 69,849

Radix-2 Lite 4 34 122,910

Considering that an ILA is essential and that it consumes a
significant portion of the PL resources, the maximum count of
FFT IPs instantiated by fft wrapper was defined to be three.
Furthermore, to demonstrate the parallelism of the conceptual
architecture and the functionality of the FFT processor, the
input signal should have 24 KSa per independent channel,
provided that each IP is able to parallel process a segment of
8 KSa on each of its individual channels.

Table II shows a partial report of the mainly used resources.
The values were obtained after the implementation of the
entire design, including the ILA. Percentages refer to the total
hardware resources available on the Zybo’s PL.

TABLE II

UTILIZATION REPORT AFTER IMPLEMENTATION STEP

Entity Slice LUT Block RAM Tile DSP Slice
rom wrapper 93 (0.17%) 23 (16.43%) 0 (0.00%)
sample ctrl 126 (0.24%) 0 (0.00%) 0 (0.00%)
fft wrapper 7,564 (14.22%) 57 (40.71%) 54 (24.55%)

ila 1,603 (3.01%) 44 (31.43%) 0 (0.00%)
TOTAL 9,386 (17.64%) 124 (88.57%) 54 (24.55%)

C. MATLAB Data Processing

The output payload of each FFT IP was captured with the
aid of the synthesized ILA and its interface through Vivado.
Additionally, the ILA front-end was used for debugging,
triggering and monitoring of the signals under analysis. Next,
the captured datasets were exported as plain text files and
imported into MATLAB environment, where a script was

                                                             ISSN: 1983  7402                                          ITA, 27 a 29 SET 2022 
 



developed to separate the real and imaginary components
of each processed sample, as well as organizing the FFT
coefficients — Xi(k) — per channel and per IP. Furthermore,
to clearly organize the imported data, a 3D matrix was built
within the script as depicted in Fig. 3. The algorithm extracts
the absolute value of each complex coefficients by consuming
pairs of consecutive columns, row by row, until it passes
through the whole 3D matrix. The magnitudes are used both
for plotting the spectrum of each STFT and for composing the
two time-frequency matrices, XCH1(t, f) and XCH2(t, f),
one per channel.

Fig. 3. 3D Matrix arrangement of processed signals.

For plotting the time-frequency representation of the input
signals, the FFT magnitudes obtained from each STFT were
disposed in matrix format. Whereas the columns represent
the three time slices — time resolution of 8,192 columns
per time slice of each transform — the rows represent the
frequency axis, from 0 to fs, with steps of fs/N — frequency
resolution. To maintain consistency with the FFT algorithm
and keep the implementation as general as possible, the entire
frequency range is considered for the calculations, however,
only positive frequencies are shown in this paper, as explained
in section IV. Considering a sample frequency of 5 GHz, the
frequency resolution obtained is 203.45 KHz. Therefore, the
time-frequency matrices look as follows:

X(t, f) =


X1(f = 0Hz) . . . X2(f = 0Hz) . . . X3(f = 0Hz) . . .

X1(f = 203.45KHz) . . . X2(f = 203.45KHz) . . . X3(f = 203.45KHz) . . .
...

...
...

X1(f = 5GHz) . . . X2(f = 5GHz) . . . X3(f = 5GHz)) . . .

(2)

Finally, the time-frequency matrices were processed using
the MATLAB function imagesc, which interprets each matrix
element as a pixel intensity value. Therefore, the output of this
function is an image whose the horizontal axis represents time,
the vertical axis represents frequency and each pixel intensity
represents the transform magnitude at the coordinate in which
it is located.

IV. RESULTS

To evaluate the implemented FPGA architecture and the
post processing environment, waveforms with known behavior
were input to the system. The following subsections discuss
the obtained results along with a performance comparison
between the FPGA and MATLAB implementations. Regar-
ding the subsequent plots which show frequency output,
single-sided magnitude spectra and positive time-frequency
representations were adopted, because only real-valued signals
were tested.

A. Continuous wave inputs

To first validate the hardware IPs in conjunction with
the implemented VHDL and MATLAB codes, a control test
with two continuous wave (CW) inputs was executed. The
frequencies of the sinusoidal tones were configured at 650
MHz for channel 1 and 1,000 MHz for channel 2. Since the
incoming signals do not change frequency neither amplitude
along the 24 KSa observation window, all three FFT IPs
generated exactly the same frequency tones for each channel,
as expected. Fig. 4 depicts the outputs of the CW test.

Fig. 4. Output of all three FFT for CW input signals. Top: Channel 1. Bottom:
Channel 2

The correctness of the processed FFT matrix is assured by
the time-frequency representation of Fig. 5, which shows that
the signals on each channel were persistent and continuous
along the observation window.

(a) Channel 1 (650 MHz). (b) Channel 2 (1,000 MHz).

Fig. 5. Time-frequency for CW input. Colormap magnitudes in volts.

B. Orthogonal frequency-division multiplexing inputs

To further evaluate the capabilities of the implemented
design, a more complex and dynamic input with a multiple
carrier signal was injected in the FFT processor. The chosen
inputs are similar to an orthogonal frequency-division mul-
tiplexing (OFDM) modulation, where the carrier frequencies
hop along the time to different bands [20]. For this test, each
channel was supplied with three different tones and each tone
frequency was modified according to Table III.

                                                             ISSN: 1983  7402                                          ITA, 27 a 29 SET 2022 
 



TABLE III

FREQUENCY MODIFICATIONS FOR OFDM TEST

Signal Interval Carrier Frequency (MHz)
100

0 ≤ n ≤ N
3

− 1 175
200
95

x1(n)
N
3

≤ n ≤ 2N
3

− 1 230
320
130

2N
3

≤ n ≤ N − 1 185
350
200

0 ≤ n ≤ N
3

− 1 260
460
400

x2(n)
N
3

≤ n ≤ 2N
3

− 1 640
700
190

2N
3

≤ n ≤ N − 1 350
370

Fig. 6 depicts the magnitudes of the coefficients processed
by each parallel FFT IP on the same spectrum, showing
the arrangement of the carriers along the frequency axis. To
provide a better visualization, the horizontal axis was limited
to 800 MHz (rather than fs/2 = 2,500 MHz).

Fig. 6. Output of all three FFT IPs for OFDM. Top: Channel 1. Bottom:
Channel 2

Additionally, Fig. 7 illustrates the frequency and magni-
tude dynamics of each carrier along the time, highlighting
the OFDM characteristic of abruptly changing the operating
frequencies along the time.

C. FPGA vs. MATLAB: performance comparison

Hardware implementations of digital processing techniques
tend to achieve better performance than processor-based so-
lutions by reducing the time required for delivering proces-
sed data, since a custom and typically parallel hardware is
synthesized to implement the desired function in low-level
elements. To verify this property within the context of the
FFT processor implementation on the Zynq-7000 PL, there
was made a comparison between the elapsed time to transform
a 24 KSa signal by the FPGA and by MATLAB, with the
latter running on an Intel i7-10700 @ 2.90 GHz processor.

(a) Channel 1. (b) Channel 2.

Fig. 7. Time-frequency for OFDM. Colormap magnitudes in volts.

For discussing the results, it is important to turn clear some
architecture differences between these two approaches which
have crucial influence on the measured times.

First, on MATLAB side, two 24 KSa discrete-time signals
are generated and organized in matrices, which are delivered
to three sequential FFT functions per channel, in blocks of
8 KSa, and so are transformed to frequency domain complex
coefficients. Second, looking to the FPGA side, the 24 KSa
signals of each channel are consumed by two parallels lanes
and delivered to three first in, first out (FIFO) buffers — 8
KSa size inside each FFT IP — in such a way that the first
FIFO buffer fills when it receives the 8,192nd sample of both
channels and the last one fills when it receives the 24,576th

sample.
Due to the fact that the FFT IPs are predisposed in a parallel

topology, each IP does not need to wait until the others have
enough data (i.e., 8 KSa) to start its processing. However, the
fact that each IP requires that input data be delivered in a
sample-per-sample scheme leads to a behavior that the FFTs
processing are not triggered at the same time. Hence, the total
elapsed time is greater than the latency of a single IP (ideal
case expected for a parallel topology). Fig. 8 shows a time-
chart containing each of the three processes performed by FFT
IP and their behavior along time, as well as the way that one
IP triggers the next one (represented by black arrows).

Fig. 8. FFT IP working stages along time.

                                                             ISSN: 1983  7402                                          ITA, 27 a 29 SET 2022 
 



Considering the differences previously discussed, the FPGA
implementation took around of 37.80% of the MATLAB total
time to perform the same dual channel FFT (equivalent to 2.46
X faster). Counting only the time effectively used by the FFT
IP processor and by the MATLAB sequential FFT functions to
transform the same data amount, the performance advantage
is even greater, since the FPGA version takes approximately
28.46% of the MATLAB time (3.5 X faster).

V. CONCLUSION

It is noticed that FPGA devices offer the possibility for
fast performing digital signal analysis techniques, specially
frequency transforms, with precision and low latency by
means of implementing a dedicated and parallel-based hard-
ware for these roles. Naturally, a trade-off situation is raised,
since the cost paid for achieving high performance is the
hardware resources allocated for the implementations, which
is limited to the amount of these resources available on each
device. Thus, the objective of presenting a high performance
FFT parallel processor for interacting with RF front-ends
was achieved, and its scalability depends on the hardware
resources offered by the FPGA target device.

About the time-frequency analysis, another trade-off exists
when facing time resolution and frequency resolution, due
to the fact that for increasing the first one it is needed to
increase the number of STFT (e.g., increase the number of
IPs), which means reducing the size of each STFT when
considering a fixed size signal. Otherwise, smaller STFT
leads to reducing the frequency resolution, which in turn is
proportional to the number of samples of each STFT. To reach
both time and frequency resolution, overlapped windows in
time domain can be used, in such a way that the same segment
of signal is processed by more that one STFT, according to
the overlapping ratio.

For future works based on the proposed architecture and
having a SoC as the central element, the PS side can be used as
a control element for triggering the FFT processor on the PL
side, as well as allowing to more elaborate functionality, such
as window overlapping and the use of a cyclical arrangement
for transforming larger signals. Furthermore, employing a
processor element, such as Zynq PS, offers the advantage of
using more complex communications interfaces for trading
data from the PL to a high level system, by means of both
bare-metal software and embedded operating system functi-
ons. Therefore, the ILA does not need to be used as interface
to extract data, releasing FPGA resources for growing up the
dimensions of the FFT processor. For these reasons, new tests
schemes can be closer to real application scenarios.

Based on the resources utilization presented in Table II, it
is estimated that two additional FFT IPs can be instantiated
by fft wrapper — identical to the three IPs already considered
— if the ILA is removed. This modification implies on having
an arrangement of five parallel FFTs, which would be able to
transform signals of up to 40 KSa at a time or to provide a
better time-resolution for incoming signals whose sizes remain
the same (i.e., 24 KSa). It is important to note that such
scaling in the number of parallel FFTs is only possible due
to the fact that sample ctrl entity does not consume the same
critical resources of the IPs, such as BRAM and DSP slices,
as shown in Table II. Thus, adding two FFT would cost extra

38 BRAMs and 36 DSP slices, leading to a total usage within
the FPGA of 84.29% for BRAMs and 40.91% for DSP slices.
Finally, due to the parallel processing of the transforms, the
three to five FFTs scaling, equivalent to 66.67% of additional
IPs, increases the total latency just on 34.68%.

REFERENCES

[1] P. Pace, Detecting and Classifying Low Probability of Intercept Radar,
ser. Artech House radar library. Artech House, 2009. [Online].
Available: https://books.google.com.br/books?id=K T4M-nA6JYC

[2] U. Meyer-Baese, Digital Signal Processing with Field Programmable
Gate Arrays, ser. Signals and Communication Technology. Springer,
2007. [Online]. Available: https://books.google.com.br/books?id=
7rg0RP0bMgUC

[3] C. Barth, R. A. Romero, and D. J. Fouts, “FPGA implementation of
multiple low-rate sampling composite detector,” in 2021 18th European
Radar Conference (EuRAD), 2022, pp. 205–208. [Online]. Available:
https://ieeexplore.ieee.org/document/9784556

[4] J. Grajal, O. Yeste-Ojeda, M. Sanchez, M. Garrido, and M. Lopez-
Vallejo, “Real time FPGA implementation of an automatic modulation
classifier for electronic warfare applications,” in 2011 19th European
Signal Processing Conference, 2011, pp. 1514–1518.

[5] C. A. Sessions, R. A. Romero, and D. J. Fouts, “A field-programmable
gate array implementation of a cognitive radar target recognition sys-
tem,” in 2022 IEEE Radar Conference (RadarConf22), 2022, pp. 1–6.

[6] A. Singh and K. Rao, “Digital receiver-based electronic intelligence
system configuration for the detection and identification of intrapulse
modulated radar signals,” Defence Science Journal, vol. 64, no. 2, pp.
152–158, Mar. 2014. [Online]. Available: https://publications.drdo.gov.
in/ojs/index.php/dsj/article/view/5091

[7] A. Adam Ahmad, A. Saliu, A. Airoboman, M. Mahmud, and S. Ab-
dullahi, “Identification of radar signals based on time-frequency agility
using short-time fourier transform,” Journal of Advances in Science and
Engineering, vol. 1, pp. 1–8, 08 2018.

[8] J.-J. Ding and H. Hu, “Low complexity time-frequency analysis
methods for efficient implementation,” in 2014 IEEE International
Conference on Consumer Electronics - Taiwan, 2014, pp. 195–196.

[9] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems
(2nd Ed.). USA: Prentice-Hall, Inc., 1996.

[10] F. Hlawatsch and F. Auger, Time-frequency Analysis: Concepts
and Methods, ser. Digital signal and image processing series.
ISTE, 2008. [Online]. Available: https://books.google.com.br/books?
id=W0DpAAAACAAJ

[11] K. Gröchenig, Foundations of Time-Frequency Analysis, ser. Applied
and Numerical Harmonic Analysis. Birkhäuser Boston, 2001. [Online].
Available: https://books.google.com.br/books?id=sjN2qq99-WwC

[12] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing.
Pearson Education, 2011. [Online]. Available: https://books.google.
com.br/books?id=EaMuAAAAQBAJ

[13] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex fourier series,” Mathematics of Computation,
vol. 19, no. 90, pp. 297–301, 1965. [Online]. Available: http:
//www.jstor.org/stable/2003354

[14] W. M. Gentleman and G. Sande, “Fast fourier transforms: For fun
and profit,” ser. AFIPS ’66 (Fall). New York, NY, USA: Association
for Computing Machinery, 1966, pp. 563–578. [Online]. Available:
https://doi.org/10.1145/1464291.1464352

[15] Digilent Inc., “Zybo Z7 Board Reference Manual.” [Online] Available:
https://digilent.com/reference/ media/reference/programmable-logic/
zybo-z7/zybo-z7 rm.pdf, 2018, acessed: Jun 30, 2022.

[16] Xilinx Inc., “Zynq-7000 SoC Data Sheet: Overview.” [Online] Avai-
lable: https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview,
2018, accessed: Jun 30, 2022.

[17] ——, “Vivado Design Suite User Guide: Getting Started
(UG910).” [Online] Available: https://docs.xilinx.com/r/en-US/
ug910-vivado-getting-started, 2022, accessed: Jun 30, 2022.

[18] ——, “PG109 Fast Fourier Transform v9.1 LogiCORE IP Product
Guide.” [Online] Available: https://docs.xilinx.com/r/en-US/pg109-xfft/
Fast-Fourier-Transform-v9.1-LogiCORE-IP-Product-Guide, 2022, ac-
cessed: Jun 30, 2022.

[19] ——, “Integrated Logic Analyzer v2.0 Data Sheet(DS875.” [Online]
Available: https://docs.xilinx.com/v/u/en-US/ds875-ila, 2022, accessed:
Jul 06, 2022.

[20] S. Haykin and M. Moher, An Introduction to Analog and
Digital Communications. Wiley, 2007. [Online]. Available: https:
//books.google.com.br/books?id=OQ1LAQAAIAAJ

                                                             ISSN: 1983  7402                                          ITA, 27 a 29 SET 2022 
 

https://books.google.com.br/books?id=K_T4M-nA6JYC
https://books.google.com.br/books?id=7rg0RP0bMgUC
https://books.google.com.br/books?id=7rg0RP0bMgUC
https://ieeexplore.ieee.org/document/9784556
https://publications.drdo.gov.in/ojs/index.php/dsj/article/view/5091
https://publications.drdo.gov.in/ojs/index.php/dsj/article/view/5091
https://books.google.com.br/books?id=W0DpAAAACAAJ
https://books.google.com.br/books?id=W0DpAAAACAAJ
https://books.google.com.br/books?id=sjN2qq99-WwC
https://books.google.com.br/books?id=EaMuAAAAQBAJ
https://books.google.com.br/books?id=EaMuAAAAQBAJ
http://www.jstor.org/stable/2003354
http://www.jstor.org/stable/2003354
https://doi.org/10.1145/1464291.1464352
https://digilent.com/reference/_media/reference/programmable-logic/zybo-z7/zybo-z7_rm.pdf
https://digilent.com/reference/_media/reference/programmable-logic/zybo-z7/zybo-z7_rm.pdf
https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview
https://docs.xilinx.com/r/en-US/ug910-vivado-getting-started
https://docs.xilinx.com/r/en-US/ug910-vivado-getting-started
https://docs.xilinx.com/r/en-US/pg109-xfft/Fast-Fourier-Transform-v9.1-LogiCORE-IP-Product-Guide
https://docs.xilinx.com/r/en-US/pg109-xfft/Fast-Fourier-Transform-v9.1-LogiCORE-IP-Product-Guide
https://docs.xilinx.com/v/u/en-US/ds875-ila
https://books.google.com.br/books?id=OQ1LAQAAIAAJ
https://books.google.com.br/books?id=OQ1LAQAAIAAJ

