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Abstract − In modern aerial defense operation, the evaluation 

of potential threats is of paramount importance for effective 

response strategies, particularly when such assessment is 

performed in real-time. This study presents a comparative 

analysis of an algorithm developed by the authors, and referred 

to as DM, and a Markov chain-based approach (MC) in terms of 

prediction accuracy, execution time, and processing capacity. 

Notably, DM consistently achieved higher accuracy until 

simulation time 1350, despite both methods utilizing the same 

Artificial Neural Network architecture. Additionally, DM 

exhibited superior execution time and processing capacity, 

handling a maximum of 89 threats within a one-second 

timeframe, while MC processed 10 threats. Based on this, it can 

be asserted that DM meets the requirements for real-time threat 

evaluation. The results can be attributed to DM's simplified 

methodology, enabling more accurate and distinct predictions. 

 

Keywords − Real-time, Threat Evaluation, Artificial Neural 

Network. 

 

I. INTRODUCTION 

 

The rapid advancements in weapons and information 

technology have significantly complicated aerial defense 

operations [1]. The task of safeguarding Defended Assets 

(DAs) from hostile air-breathing threats (ABTs) such as 

fighter planes has evolved into a complex endeavor due to the 

advancement of these threats [2]. Given that these ABTs might 

neutralize or annihilate critical structures and areas, it is vital 

to scrutinize the tactical situation in real time [3]. Real-time 

evaluation affords the required flexibility and agility to 

navigate these dynamic challenges, enabling air defense 

systems to swiftly adapt their defense strategies and effectively 

neutralize emerging threats [1]. 

The challenge of effectively using battlefield target 

detection information to assist commanders in decision-

making has gained prominence in research [4]. Friendly forces 

utilize radars for gathering information and identifying 

incoming ABTs. Using this radar information, counter-air 

operations are executed through Threat Evaluation (TE) and 

weapons allocation [5]. A comprehensive evaluation of enemy 

threats is pivotal for increasing survivability and gaining 

battlefield advantage [4].  

The TE process in anti-aircraft defense systems quantifies 

threat levels based on potential combat abilities and intentions 

of enemy targets [4]. In the end, the objective of TE is to 

prioritize engagements for optimal Weapon Target Allocation 

(WTA) by assigning Threat Values (TVs) to detected 

ABTs.[5]. This procedure allows the defending force to 

allocate weaponry correctly against hostile targets, 

considering the limited availability of weaponry in real-world 

scenarios [6]. 
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Predicting a target's state and understanding its intentions 

in advance enhances the effectiveness of defense decision-

making systems, augmenting operational efficiency, 

conserving defense resources and playing a critical role in 

future command and control systems [7]. Thus, precise TE is 

essential in enhancing the accuracy of the defensive decision-

making process to effectively counter the most significant 

threats [8]. 

 Among the techniques used to model the TE process and 

quantify the degree of threat posed by ABTs, Machine 

Learning-based methods hold significant potential. They can 

accommodate the dynamic nature of aerial defense scenarios, 

a critical aspect in predicting time-sensitive information that 

other methods may overlook [9]. 

Ref. [5] partially achieved this objective. Assessments 

were conducted using information gathered by radar in a 

scenario where ABTs were detected. The ABTs' trajectories 

were modeled using a Markov chain-based algorithm that 

implemented two distinct Artificial Neural Networks (NNs) 

[10]. The executed simulations reached a prediction accuracy 

of 35%. Therefore, there is a need for more effective TE 

methods that balance accuracy with prompt execution of the 

related tasks.  

In this regard, the present study proposes an improved 

version of the approach delineated in [5] aiming to optimize 

the identification of potential targets of multiple ABTs by 

predicting their attack routes under real-time constraints. The 

model employs two distinct Machine Learning (ML) 

techniques to handle the ABTs' attributes. The initial technique 

(function α) predicts the subsequent position of the aircraft, 

while the second one (function β) outputs predicted attributes 

of the ABT in the succeeding phase. This procedure is 

iteratively carried out until the TAs of all ABTs are estimated 

for each given time interval. 

 

II. RELEVANT LITERATURE 

 

In the past, there was limited literature on the topic of threat 

assessment compared to extensive research on WTA [3]. 

However, in recent years, there has been a significant increase 

in publications focused on TE. These studies can be classified 

according to the employed methods, although there is a dearth 

of explicit criteria and inconsistency in categorization among 

authors. This selective citation presents relevant research on 

threat assessment, discussing the benefits and limitations of 

different methods without attempting to classify them into 

specific categories. 

Two traditional techniques predict the arrival times of 

individual ABTs to a Target Asset (TA) by considering 

attribute information. These methods assign a high TV when 

the predicted arrival time is imminent. For example, [11] 

proposed the Closest Point of Approach (CPA) concept, while 

[12] utilized the Radial Speed Vector (RSV) method. 
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However, both CPA and RSV methods have a critical 

constraint as they assume that the objective of an ABT is the 

TA with the shortest time to arrival. 

Other techniques are commonly used to model the TE 

process and quantify the degree of danger posed by ABTs, 

such as Lanchester's equation [13], multi-attribute decision 

making [14], game theory [15], and the threat index method 

[4]. The rule-based approach has also been explored in [16], 

where experienced air defense officers select variables and 

develop TE rules. Fuzzy approaches [17] and Bayesian 

networks [18] have been proposed to combine expert 

knowledge with inference rules. While these methods can 

ensure accuracy, real-time performance becomes a challenge. 

Another significant limitation of these approaches is their 

dependency on the knowledge of subject matter experts, 

adding a subjective element to the process [5]. 

Conversely, Artificial Intelligence-based techniques have 

the potential to address the challenge of real-time performance 

and provide accurate predictions in dynamic aerial defense 

environments [19], without relying on expert experience [5]. 

For instance, supervised ML techniques provide efficient 

assessment processes with reduced execution times by 

exploring connections between features and labels [19]. 

Examples include NN [7] and Support Vector Machine (SVM) 

[20]. NN offers self-learning and reasoning abilities [21], 

while SVM is suitable for small sample prediction [9]. 

As previously discussed, [5] introduced a methodology for 

performing TE on ABTs using radar data within a context 

where hostile ABTs are targeting multiple DAs. This method 

is comprised of TA prediction and TE. For the TA prediction, 

they proposed an algorithm where an ABT’s movement 

trajectory was modeled using a Markov chain, while the one-

step transition probability of the ABT was characterized by 

NNs. The TV for each ABT was evaluated by factoring in the 

distance and weight of the DA identified by the TA prediction 

algorithm. They ran an air-attack simulation that incorporated 

406 ABTs originating from fifteen different locations and 

targeting twenty friendly DAs.  

Despite the setup facilitating prediction of final ABT TAs 

by calculating probabilities of all potential attack routes 

without expert reliance, the 35% accuracy achieved in 

simulations might undermine the subsequent WTA task, 

especially with typically limited weaponry. Also, the study 

didn't assess the algorithm's execution time, a crucial metric in 

evaluating anti-aircraft defense threat assessment algorithms. 

Quick, efficient responses are pivotal in scenarios requiring 

real-time decisions, handling large data volumes, optimizing 

limited resources use, and adapting to evolving threats 

dynamically. Therefore, time-efficient algorithms are 

fundamental to anti-aircraft defense efficacy. 

 

III. THE PROPOSED METHOD 

 

This research executes an algorithm capable of processing 

radar-provided information about ABTs (known as targets) at 

specific time intervals. Utilizing two ML techniques, the 

algorithm aims to predict the TV of each ABT by performing 

this process for every ABT and time interval from initial 

detection until the end of the attack route. Fighter aircraft are 

used as target types, and parameters such as position, speed, 

and heading (indicative of the target's intent), are obtained 

from a radar located in friendly territory. 

The battlefield was compartmentalized into hexagonal 

cells for TA prediction, using the concept of cell time defined 

in [5], where the state is determined by the cell the ABT 

currently occupies. As an aircraft moves from one cell to 

another, the cell time, represented by η, increases by 1. 

However, this state transition time η is different from the radar 

scanning time t, meaning that for the same cell time η, there 

could be multiple scanning times t. This division of space into 

hexagonal cells allows for the tracking of changes in ABT 

attributes over its route for a given cell, aiding ML techniques 

in predicting the ABT's next cell and its attributes. 

The conducted experiments were based on the following 

assumptions: (1) ABTs adhere to pre-determined operationally 

feasible routes; (2) ABTs are continuously detected with no 

constraints on radar detection performance; and (3) the combat 

radius Ri of an ABT is determined by the maximum number of 

cells it can traverse through its route. The importance of 

considering the relative position of an aircraft within its current 

cell is illustrated in Fig. 1. This relative position, indicated by 

points A, B, and C within cell c12, can influence the aircraft's 

next move, even when the direction or heading remains the 

same (150°). 

 

 
Fig. 1. Effect of relative location on the subsequent state and moving 

direction [5]. 

 
The relative position also dictates the attribute values of the 

ABT in the next cell, enabling ML techniques to gain deeper 

insights into the correlations among these parameters and 

ultimately enhancing the accuracy of subsequent cell time 

predictions.  

The directions of movement are established based on the 

angular position between the center of the current cell and the 

center of each adjacent cell. Possible movements occur at 

angles of 0°, 60°, 120°, 180°, 240°, and 360°. The likelihood 

of an aircraft moving to an adjacent cell is expressed as a 

function of the angle between the centers of these cells, 

represented by the probability vector P = [p0, p60, p180, p240, 

p300]. Each element of vector P is assigned a class, with p0 as 

class 0 and p300 as class 5. 

The algorithm uses radar information to create an attribute 

vector [𝑥𝑖
𝑡 , 𝑦𝑖

𝑡 , 𝑣𝑖
𝑡 , 𝜃𝑖

𝑡] for an ABT i at radar scanning time t, 

excluding altitude (z) information. The attribute vector Χi,η is 

defined by (1) and includes the ABT's average attributes as it 

passes through the current cell and its relative position to the 

center of the current cell. 

 

𝜒𝑖,𝜂 = [�̃�𝑖,𝜂 , �̃�𝑖,𝜂, 𝑣𝑖,𝜂,  𝜃𝑖,𝜂],          (1) 

 

where �̃�𝑖,𝜂 and �̃�𝑖,𝜂  denote the aircraft's relative position in 

reference to the center of the current cell (xc, yc).  
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Equations (2) and (3) depict the mathematical expressions 

used to calculate the aircraft's relative position at each radar 

scanning instance. 

 

�̃� = 𝑥 − 𝑥𝑐   (2) 

 

�̃� = 𝑦 −  𝑦𝑐   (3) 

 

For the computation of the ABT's average speed and 

heading within a single cell, the current cell of the ABT must 

first be identified. The attribute vector 𝛸𝑖,𝜂+1 at the cell time 

η + 1 is then predicted using the function β as defined in (4). 

 

𝜒𝑖,𝜂+1 = 𝛽(𝜒𝑖,𝜂)   (4) 

 

The necessary data to predict the subsequent cell that the 

ABT will occupy depends on the attribute vector 𝛸𝑖,𝜂  of the 

ABT and its threat factor. The ABT's consistent movement is 

towards a DA for initiating an attack, and the rate of proximity 

to the DA is acknowledged as the threat factor 𝛵𝑖,𝑚,𝜂 on DA m, 

expressed by (5). 

 

𝛵𝑖,𝑚,𝜂 =  
𝑣𝑖 𝑥 𝑐𝑜𝑠 (ℎ𝑖,𝑚,𝜂)

𝑑𝑖,𝑚,𝜂
,   (5) 

 

where ℎ𝑖,𝑚,𝜂 denotes the relative angle between the course of 

the ABT and DA, while 𝑑𝑖,𝑚,𝜂 signifies the distance from the 

ABT to the DA. 

After the threat factors have been calculated, a novel 

attribute vector is formed, denoted as                                          

𝜒𝑖,𝜂 = [�̃�𝑖,𝜂 , �̃�𝑖,𝜂, 𝑣𝑖,𝜂, 𝜃𝑖,𝜂, 𝛵𝑖,1,𝜂, … , 𝛵𝑖,𝑚,𝜂]. This updated vector 

incorporates the attributes from vector 𝛸𝑖,𝜂 and the threat factor 

for an ABT related to each existing DA. The objective is to use 

this enriched vector in function α to predict the class of the 

subsequent cell the ABT is likely to occupy, as detailed in (6). 

 

𝐶𝑙𝑎𝑠𝑠 (0 𝑡𝑜 5) = 𝛼(𝜒𝑖,𝜂)        (6) 

 

During the same cell time, the algorithm conducts a series 

of predictions until the cell time reaches the ABT's combat 

radius. The vector that compiles the probabilities of the 

predicted cells for a particular cell time is denoted by (7).  

 

𝑃𝑖,𝜂′ = [ 𝜋𝑖,𝜂′,1, …, 𝜋𝑖,𝜂′,𝑛],  (7) 

 

where 𝜋𝑖,𝜂′,𝑐  denotes the likelihood of the ABT i being situated 

in a cell c at time η'. 

The vector Ω compiles the corresponding probabilities of 

all potential cells that may be traversed along the ABTs' routes, 

with the aim of determining the target cell at the conclusion of 

this process. This target cell will be the one with the maximum 

accumulated probability. The vector Ω is defined by (8). 

 

𝛺 = ∑ 𝑃𝑖,𝜂′
𝑅
𝑖=𝜂              (8) 

 

The algorithm computes the TV of an ABT factoring in two 

considerations: the weight attached to the projected DA target, 

gauged by the degree of potential loss or harm that friendly 

units would endure if the DA is eliminated or neutralized; and 

the proximity between the threat object and the DA, with the 

calculated TVi,η being inversely proportional to their distance 

(the TVi,η augments as the threat object approaches). These 

computations are encapsulated by (9). 

 

𝛵𝑉𝑖,𝜂 =  
𝜔𝑚

𝑑𝑖,𝑚,𝜂
,    (9) 

where 𝜔𝑚 is the significance given to DA m, and 𝑑𝑖,𝑚,𝜂 is the 

distance between the ABT i and the DA m, which is predicted 

as the target at cell time η by the algorithm. 

The process conducted by the algorithm initiates as soon as 

ABT information is acquired from the radar and culminates 

with the generation of the engagement priority list. This list is 

derived from the TVs which are contingent upon the 

importance ascribed to the projected DA targets for each ABT. 

The developed algorithm is summarized in Table I. 

 
TABLE  I PSEUDO-CODE OF DEVELOPED ALGORITHM. 

Algorithm 1 – Developed Algorithm 

Step. 1 Receive information from Radar 

Generate an empty engagement priority list 

    Step. 2 For each in-flight ABT i during a scanning time t, do the    
following: 

Create the attribute vector [𝑥𝑖
𝑡, 𝑦𝑖

𝑡 , 𝑣𝑖
𝑡, 𝜃𝑖

𝑡]  

Identify the current_cell 

Calculate the relative longitude, the relative latitude, mean speed and 
direction of ABT within the current_cell 

Create 𝑋𝑖,𝜂 

Let η’ ⟵ η  

Let 𝑋𝑖,𝜂′ ⟵ 𝑋𝑖,𝜂 

    Step. 3 if η' < Ri then (otherwise, go to step 6): 

   Define 𝑃𝑖,𝜂′  

   Create Ω  
        Step. 4 while η’ < Ri: 

Create 𝑃𝑖,𝜂′+1 as a zero vector 

Calculate 𝛵𝑖,𝑚,𝜂 

Create 𝜒𝑖,𝜂′  

𝐶𝑙𝑎𝑠𝑠 (0 𝑡𝑜 5) = 𝑔(𝜒𝑖,𝜂) 

Identify the next cell c(d) as the adjacent cell c located at d 

target_cell  ⟵ c(d) 

𝜋𝑖,𝜂′+1,𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑒𝑙𝑙 ⟵ 1 

Perform the updates: 

𝑃𝑖,𝜂′+1 ⟵  𝑃𝑖,𝜂′+1 × 
1

(𝑅𝑖− 𝜂′)
. 

𝜒𝑖,𝜂′+1 ⟵ 𝑓(𝜒𝑖,𝜂′) 

η’ ⟵ η’ + 1               

 𝑋𝑖,𝜂′  ⟵ 𝑋𝑖,𝜂′+1 

        current_cell  ⟵ target_cell                 

           𝑃𝑖,𝜂′  ⟵ 𝑃𝑖,𝜂′ + 𝑃𝑖,𝜂′+1 

        Ω ⟵ Ω + 𝑃𝑖,𝜂′ 

        end while 

        Step. 5 Create a final probability list containing tuples (cell, 

probability) for each cell in which the DAs are located 

Determine the cell with the highest probability in the final probability 
list 

Determine the target_DA 

if there are multiple DAs in the current_cell with the highest 
probability in the final probability list: 

target_DA ⟵ DA with the the highest threat factor 

end if 

end if  

    Step. 6 target_DA ⟵ DA in the current_cell 

if there are multiple DAs in the current_cell: 

target_DA ⟵DA with the the highest threat factor 

end if 

    Step. 7 Calculate TVi,η 

Add the tuple (ABT, TVi,η) in the engagement priority list 
    end for 

Step. 8 Normalize the engagement priority list containing the TVs of each 

detected ABT and sort the values in descending order 
Display the engagement priority list   

 

The algorithm initializes in Step 1 once it receives 

information from the radar. The initial engagement priority list 
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is empty, and it will store calculated TVs for detected ABTs at 

scanning time t. 

In Step 2, a vector including speed, direction, and position 

(longitude and latitude) of each ABT is created. This allows 

the identification of the current cells occupied by the ABTs. 

The current cell information is key to calculating parameters 

within attribute vectors used as inputs for functions α and β. 

Step 3 generates two probability vectors: 𝑃𝑖,𝜂′ indicates the 

probability of an ABT occupying a cell at time η', and the final 

probability vector Ω presents the accumulated probability for 

each cell in the scenario. 

If the combat radius Ri of an ABT i hasn't been reached, 

Step 4 computes the threat factor of the ABT with respect to 

each DA based on the current position of the ABT using (5). 

Through (6) and (4), functions α and β predict the next cell and 

calculate the parameters of the ABT in the predicted new cell, 

respectively. As a result, the cell time η' increases by one, and 

the predicted cell becomes the ABT's current cell. This entire 

process is then repeated. The probability vector 𝑃𝑖,𝜂′  

accumulates the probabilities of the ABT occupying the 

adjacent cell in future moments as iterations (representing 

transitions from one cell to another) are performed. This whole 

step is repeated until the while condition is fulfilled. 

Step 5 produces the final probability list containing tuples 

(cell, probability) for each cell housing DAs. The target DA is 

identified as the one located in the ABT's current cell, based 

on the highest observed probability value. In cases where 

multiple DAs are in the current cell, the target DA is chosen as 

the one with the highest threat factor. 

When the combat radius Ri of an ABT i is reached, Steps 

3, 4, and 5 are bypassed. The algorithm moves to Step 6, where 

the target DA for each ABT is selected as the one in the current 

cell of the ABT. In cases of multiple DAs in the current cell, 

the process described in the previous step is performed. 

In Step 7, the ABT's TV is calculated according to (9), and 

a tuple with its identification and the calculated value is added 

to the engagement priority list generated in Step 1. 

Lastly, Step 8 sorts the engagement priority list in 

descending order based on normalized TVs, providing the 

ABTs in the optimal sequence for engagement. The list is then 

displayed, and the algorithm stops. 

 

IV. SIMULATION EXPERIMENTS 

 

A. Configurated scenario 

 

This study was based on a battlefield scenario measuring 

370 km in width and 278 km in length. In this setting, fifteen 

origin points for attacking aircraft, twenty targets, and 28 

waypoints were defined. This setup allowed the attacking 

aircraft to swiftly change directions, intending to avoid anti-

aircraft defenses. The combination of these points resulted in 

41 viable routes, designed to simulate a wide range of possible 

attack patterns. The airspace was divided into hexagonal cells, 

each measuring 40 km on each side. 

For each simulation, 200 ABTs were generated. Waves of 

two, four, six, or eight new ABTs were detected on routes 

among the 41 routes at each time interval t. Random seeds 

were used to determine the number of ABTs in each wave and 

to select the routes for each aircraft. This method ensured the 

cases were distinct and allowed for a diverse evaluation of the 

algorithms' performances. Additionally, Gaussian noise was 

added to the ABTs' speed and heading to replicate realistic 

scenarios, leading to different flight trajectories for each ABT 

even on the same attack route. 

From the origin point, the first-time detected ABT by the 

radar was assigned an initial speed of 230 m/s, which increased 

by 20 m/s every 300 radar scans. The final detected speeds 

varied due to the different lengths of routes. Fig. 2 shows the 

scenario including the origin points, waypoints, and the 

locations of the twenty TA or DAs. The importance values 

assigned to each of the configured DAs in the utilized scenario 

were the same as those used in [5]. 

 

 
Fig. 2. The configurated scenario. 

 

B. Evaluation of ML techniques  

 

The performance of the developed method, referred to as 

DM in this study, was evaluated by comparing it to a Markov 

chain-based algorithm (referred to as MC). Both 

configurations utilized two Multi-Layer Perceptron (MLP) 

neural networks [10] in functions α and β, with specific 

hyperparameters detailed in Table II. The datasets were 

divided into a 70% training set and a 30% validation set. The 

evaluation metric used for function α was Accuracy (ACC), 

while Mean Squared Error (MSE) was employed as the 

evaluation metric for function β. 

 
TABLE II.  HYPERPARAMETERS OF THE SET OF NN EMPLOYED IN 

THE MC AND DM CONFIGURATIONS. 

Hyperparameter 
Function α 

NN 

Function β 

NN 

Solver Adam optimizer [22]  Adam optimizer [22]  

Hidden Layers 2 2 

Hidden Nodes per Layer 50  50  

Learning Rate 0.0003 0.0003 

Activation Function Tanh [23] Tanh [23] 

 

During training and validation, 200 ABTs were simulated 

on twenty randomly selected attack routes. This meant that 

roughly half of the total possible routes were used for training.  

The dataset for function α comprised ABT information 

recorded every second, the threat factors of the ABT for each 

DA, and the indicator of the next cell to be traversed. For 

function β, the dataset was a vector of ABT's relative position, 

mean speed, and mean heading. The inputs and outputs for the 

functions α and β are delineated by (6) and (4), respectively. 

Table III illustrates the performance of NNs techniques in 

MC and DM configurations. The obtained values in the 

evaluation metrics of the validation sets provided confirmation 

that the NNs were trained without experiencing overfitting. 
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TABLE III.  PERFORMANCE OF THE NN TECHNIQUES EMPLOYED 

IN MC AND DM CONFIGURATIONS. 

ML 

Technique 

Function α (ACC) 

 

Function β (MSE) 

 Training Set Validation Set Training Set Validation Set 

NN  0.985 0.985 - - 

NN - - 7.483 7.292 

 

V. RESULTS AND COMPARATIVE ANALYSIS 

 

The research focused on assessing the efficiency of 

algorithms using performance metrics such as accuracy, 

execution time - measured from the moment ABT information 

was received until the creation of the engagement priority 

list - and processing capacity. In order to facilitate a fair 

comparison, both algorithms shared the same structure and 

functions in the common calculations between them, with the 

only difference being in the specifically defined approach for 

the predictions in the function α and the calculation of 

cumulative probability vectors. 

The simulations were performed on a computer equipped 

with an Intel Core i7 10750H processor, six cores @ 2.60 GHz, 

and 16 Gb RAM. This computational setup provided sufficient 

processing power and memory capacity to ensure reliable 

performance evaluations of the algorithms under investigation. 

Twenty simulated cases were performed, each generating 200 

ABTs over multiple time steps.  

The accuracies generated by the two methods (MC and 

DM) were assessed using statistical tests. The Shapiro-Wilk 

[24] normality test indicated that the results did not follow a 

normal distribution, although the Levene test [25] assessed the 

equality of variances. To address that limitation, a pairwise 

Kruskal-Wallis H-test [26] was performed, which yielded 

statistically significant results.  

Fig. 3 presents the mean accuracy of ABTs in flight at each 

simulation time for the twenty simulated cases. As the ABTs 

advanced along their routes, the accuracies of both methods 

approached convergence. It can be noted that DM 

outperformed MC consistently until approximately simulation 

time 1350, despite using the same NN architecture. 

 

 
Fig. 3. Mean accuracies of the algorithms by simulation time (20 cases). 

 

One possible reason is that DM simplifies the prediction 

task by focusing on a single class, while MC requires the 

network to assign probabilities to multiple classes. This single-

class nature of DM makes it easier for the network to learn and 

achieve accurate predictions.  

Another contributing factor could be the decision threshold 

employed in each predictive approach. The DM prediction 

function typically uses a predefined threshold to classify an 

instance into a specific class. This threshold can be set to 

optimize accuracy for a particular class, making it more 

effective for predicting that specific class accurately. In 

contrast, the MC prediction function provides probabilities for 

all classes, and the decision threshold might not be optimized 

for the specific class of interest, leading to diminished 

accuracy. Additionally, the single-class prediction could 

benefit from a less complex decision boundary compared to 

the multi-class prediction. By focusing on a single class, the 

network might be capable of learning a more distinctive and 

easier-to-identify decision boundary, resulting in superior 

predictions. 

The execution times of the algorithms were evaluated in 

addition to the accuracies. A randomly selected case (from the 

cases used in the previous metric) was executed twenty times. 

Statistical tests confirmed significant differences in the 

execution times between MC and DM, shown in Fig. 4. Once 

again, DM demonstrated superior performance compared to 

MC, with a noticeable increase in execution time directly 

correlated with the number of ABTs in flight (indicated by the 

dash-dot gray line), especially for MC. This difference can be 

attributed to the fact that DM predicts a single class for each 

time step, while MC predicts probabilities for multiple 

adjacent cells. 

 

 
Fig. 4. Mean execution times of the algorithms by simulation time and 

number of ABTs/10 (selected case). 

 

In the context of a real-world application, it is crucial that 

the algorithm's responses enable timely processing of the 

generated information by decision-makers. This ensures the 

effective execution of the succeeding steps in the air defense 

process. The evaluation of the algorithms in terms of 

processing capacity was based on a one-second radar scanning 

time interval, which served as a benchmark for comparing the 

performance of the algorithms in processing a certain number 

of ABTs. 

Table IV presents the average number, along with their 

standard deviation, of ABTs processed within the specified 

time interval for each simulated case. The results indicate that 

MC managed to process 10 ABTs within the one-second 
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timeframe in the randomly selected case, while DM processed 

a maximum of 89 ABTs, showcasing its better performance. 

As previously explained, this can be attributed to the multi-

prediction approach utilized by the MC algorithm when 

compared to the single-class prediction nature of DM. 

 
TABLE IV.  MAXIMUM NUMBER OF ABTS PROCESSED WITHIN A 

ONE-SECOND TIMEFRAME AND RESPECTIVE STANDARD 

DEVIATIONS (SD). 

Case 
Number of ABTs (mean ± SD) 

MC DM 

Selected case 10.0 ± 0.0 89.4 ± 1.8 

 

VI. CONCLUSIONS 

 

The assessment of potential threats is vital in air defense as 

it provides valuable insights into the ever-changing threat 

landscape and enables prompt responses. This study aimed to 

compare the performance of a developed algorithm (DM), and 

a Markov chain-based approach (MC). The algorithms were 

evaluated in terms of prediction accuracy, execution time, and 

processing capacity under rigorous statistical tests. To enable 

a fair comparison, both evaluated algorithms had similar 

structures and functions for common calculations. As the 

simulations progressed, both methods showed converging 

accuracies. However, DM outperformed MC until simulation 

time 1350, despite using the same NN architecture. 

In terms of execution time, DM exhibited significantly 

better performance. The execution time increased as the 

number of ABTs processed increased, particularly for MC.  

The evaluation of processing capacity was based on a one-

second radar scanning time interval. DM surpassed MC in 

terms of ABT processing capacity, with DM processing a 

maximum of 89 ABTs compared to MC's processing of 10 

ABTs within the one-second timeframe in the selected case. 

The superior performance of the developed algorithm 

across all evaluated metrics can be attributed to the 

simplification of the prediction task in DM, which focuses on 

a single class. By narrowing the scope of prediction, DM 

streamlines the learning process. Additionally, DM benefits 

from a simpler decision boundary in relation to the class 

predictions made by function α, allowing for more distinct and 

accurate predictions compared to MC, which assigns 

probabilities to multiple adjacent cells. 

Recently, the authors conducted a more detailed 

investigation of the studied problem, exploring other ML 

techniques through a series of experiments. This allowed for 

an evaluation of the performance of the algorithm in different 

configurations. Additionally, the algorithm was tested for 

scalability. The results have been organized into a paper and 

are planned to be submitted for publication in the near future. 
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