
Exploration and Rescue of Shipwreck Survivors
using Reinforcement Learning-Empowered Drone

Swarms
Leonardo D. M. de Abreu1, Luis F. S. Carrete1, Manuel Castanares1, Enrico F. Damiani1, José Fernando B.

Brancalion2, Fabrı́cio J. Barth1
1Insper, São Paulo/SP - Brasil

2Embraer, São José dos Campos/SP - Brasil

Abstract— The goal of this project is to create a reinforcement
learning algorithm that locates shipwrecked individuals using
a swarm of drones. A simulated environment was developed
to train and visualize the outcome of the trained algorithm
considering the ocean’s dynamic circumstances. This project does
not discuss image recognition of shipwrecked people, since the
true focus of this project is to optimize the search routine of a
drone to find the target in the most efficient way possible. The
implemented Reinforce algorithm takes into account a dynamic
map of probabilities, representing the chances of a person
being found, as well as the position of other agents. Outcomes
include an open-source Python package for the environment
and the implementation of the reinforcement learning algorithm.
The algorithm demonstrates superiority over the predefined
approach, proving the advantages of reinforcement learning in
efficiency and effectiveness.

Keywords— Multi-Agent Systems, Reinforcement Learning,
Simulation

I. INTRODUCTION

Every year, vast bodies of water worldwide claim nu-
merous missing individuals. According to the World Health
Organization (WHO), there are an estimated 236,000 annual
drowning deaths worldwide, making it the third leading cause
of unintentional injury/death worldwide and accounting for
7% of all injury-related deaths [1]. With over 71% of the
earth’s surface covered by oceans[2], finding these missing
individuals is no easy task, due to the complexity of oceanic
environments and the vastness of the search areas. However,
drone swarms have emerged as a promising tool for searching
for missing individuals.

The use of drones in rescue operations has resulted in
successfully saving 940 people while being utilized in 551
rescue incidents so far [3]. The capacity of drones to reach
difficult terrain and inaccessible areas, as well as their ability
to capture real-time images and videos, has proved to be
helpful in search and rescue missions.

The success rate of search and rescue missions is believed
to be significantly increased by the incorporation of Artificial
Intelligence (AI) technology [4], as it can leverage proba-
bilistic models based on the ocean’s behaviors, as well as
the last known location of the people being rescued. Several
solutions have been proposed in the last years to solve this
problem [5], [6], [7], in special, using reinforcement learning
algorithms. By utilizing AI and Reinforcement Learning (RL),
the project aims to investigate algorithms that can improve
the effectiveness of search and rescue operations in dynamic

environments, ultimately resulting in more lives saved [5], [6],
[7].

This paper focuses on the demonstration and explanation
of two distinct search algorithms. An algorithm that uses
predefined paths to search for the target, and a multi-agent
reinforcement learning algorithm, which is expected to learn
and optimize the search autonomously. The objective is to
create an algorithm that is capable of finding a shipwrecked
person in the most efficient way possible. Furthermore, the
environment that will be developed will replicate the cir-
cumstances of the ocean simply. To do so, a scenario will
be created, where the environment changes dynamically, to
update the probabilities in which the target could be. This
does not require an accurate representation of how the ocean
acts. Moreover, since the project deals strictly with simulated
environments, image recognition, and real-life testing will not
be considered. However, parameters regarding real-life issues
are explored, for example, the number of drones needed and
their technical limitations, as well as different deployment
strategies.

II. LITERATURE REVIEW

To improve the performance of Unmanned Aerial Vehicles
(UAVs) in Search and Rescue (SAR) missions, Alotaibi [5]
proposes the Layered SAR (LSAR) algorithm. The key idea
is, that in disasters, there is a location where most of the
possible survivors are located. Therefore, the algorithm initi-
ally, focuses the search on this specific location and gradually
moves away.

This technique uses a single command base, utilizing a
cloud server as the drone mission controller. This cloud server
is implemented through a cloud-based management system
that is used to facilitate communication and collaboration
among a swarm of drones, as well as control UAVs and
schedule their missions.

While searching for survivors, if a person is found, the
UAV records his location. Concurrently, the searcher UAV
periodically reviews the locations to determine whether it
meets a predefined threshold. When this threshold is met, the
searcher UAV aircraft signals the cloud server for assistance.
Following this, the server initiates an inward shift, beginning
from the layer where the request for help originated. Once
a drone sends a request for help, it is reassigned as a
rescuer. Meanwhile, the remaining aircraft that underwent
layer shifting continue their search activities as searchers in

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

064

their newly assigned layers. When the UAV rescuer completes
its mission, the other drones begin to return to their original
layers, and the process starts anew. In situations where many
drones are allocated to the same layer, the process is similar,
except that only one drone of the layer becomes a rescuer.

Another paper that delved into the utilization of UAVs for
SAR missions is Maritime Search and Rescue via Multiple
Coordinated UAS [7]. In it, there is the development of
an Unmanned Aerial System (UAS) focused on the search
element of these missions. The article devised a strategy
that uses multiple UAS in cooperation. This solution begins
by selecting an area, covered by a probability distribution,
and then partitioning it. After that, each drone is assigned a
partition, and it is ensured that a minimum distance is main-
tained between each drone. Also, a greedy algorithm pairs
the most capable UASs with the most significant partitions.
The capability of a UAS is determined based on the quality
of its camera and its endurance, while the significance of a
partition is related to the chances of having a survivor. Path
evaluation follows those steps, in which path and altitude are
assigned to each drone. There are four possible pre-defined
paths, devised by the article. In addition, this article also
developed an equation that can calculate the visible area of
the drone at a given time.

Now looking at reinforcement learning (RL) solutions, Jia
[6] presents a solution to SAR missions in the maritime
environment using boats to perform the search discussing the
decision-making problems in SAR missions, which involve
determining the search area, deploying maritime vehicles, and
planning the search. In this algorithm, the next action of the
agent is based on its current state. Thus, given the current
state of the agent, the action with the highest reward from the
previous training is selected from the Q-table.

The experiment’s comparative results indicate that the se-
arch path generated by the model can safely cover the entire
SAR area, maintaining a low rate of repetitive coverage, and
preferentially searching high-probability areas. However, there
are limitations to this study. The “search area is assumed to
be constant” during the path-planning process and the model
does not consider the impact of wind, waves, and moving
obstacles.

In terms of similarities, both [5] and [6] employ probability
regions to locate the target. Nevertheless, while the LSAR
approach always places the highest probability region at the
center, [6] calculates the probability based on maritime data
and statistical methods. In addition, the [7] and [5] utilize
multiple agents to complete the SAR mission faster. However,
while in [5] the drones just communicate with each other
when individuals are found, in [7] there is no communication
between the agents. Although all three approaches aim to
optimize SAR missions and increase the success rate, they
utilize distinct strategies to achieve these goals.

III. SIMULATION TOOL AND ENVIRONMENT

To achieve what was proposed, a simulation of the real-
world situation had to be created, but since the real world is
incredibly complex a few premises had to be set to simplify
the overall scenario. First of all, there will only be one
shipwrecked person. Additionally, it is considered that once
the drone is over the person, and executes the action of search,

he will identify the person. How he identifies the person is
not considered, since this is only a simulated environment.
The drone will be able to move only in the area delimited by
a grid that covers where the shipwrecked person is located.
The drone can only execute five different actions, moving
up, down, left, right, and searching. The search was defined
as an action because, in this scenario, the drone will be
flying at a high altitude so that it can visualize a bigger area.
Once it identifies a possible target it will descend and verify
that it is in fact a person, therefore the search action was
included to represent this process. The drone also does not
move diagonally to simplify the model. The environment will
not simulate the wind or any natural disaster which may affect
the drone’s flight.

The drones have a restriction, their battery life. They can
only do a certain number of steps before their battery ends.
The person’s movement in the ocean will also not be defined
by complex ocean modeling but by a simple vector that will
force the person to drift away over time. Finally, the drone
will be placed in a grid, where each cell has a probability,
representing the chances of the shipwrecked person being
located in that area.

Based on previous studies [6], [7] a probability matrix will
be created to demonstrate the chances of the shipwrecked
person being in a given cell. The matrix has the same
dimensions as the position matrix, and it is the primary piece
of information used by the agent. Researchers with similar
areas of study [6], [7] used multiple metrics in order to define
the values of the matrix. For example, the wind and flow of
the ocean can greatly impact the trajectory of a shipwrecked
person. This type of data can vary depending on the place,
day, and time. However, since the modeling of the ocean
is not a priority of the project, a directional vector will
act as the ocean’s current, which will subsequently drag the
shipwrecked person to different places on the map. This will,
therefore, change the value of each cell in the probability
matrix. Said directional vector along with the initial position
of the shipwrecked person are inputs that can be defined by
the user. This allows the simulation of a scenario in which
the user has knowledge of the ocean’s current, along with the
shipwrecked person’s last known localization.

Since the goal of this library is not to simulate in depth the
ocean’s movements or the person’s movement in the ocean,
the person’s movement in the grid will be created using a
probability matrix which is described above. In the simulation,
the person will start in a cell chosen by the user where the
probability of the person being there is 100%. In the next step,
the probability will disperse, using a Gaussian distribution.
Considering the dispersed probability matrix the person will
look at all the adjacent cell’s probabilities and will make a
decision either to move or to stay in its current spot, according
to the probability of the adjacent cells.

This movement strategy was adapted to simulate the target’s
decision-making. When searching for a person in the ocean,
it is doubtful they will stay in the same place, but instead,
they will constantly be trying to make decisions to survive,
meaning, they would most likely move around, while being
dislocated by the current. Although in a real situation, a
shipwrecked person may not move as fast as the target in
the simulation, the movement is also designed to simulate
the uncertainty of a person being in a cell. Even though the

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

065

person may not be in a high-probability cell, the agent still
must search that area, because the person will most probably
be located in one of the other high-probability cells. This type
of behavior, by the agent, is reflected in the environment’s
rewards.

The reward is a simple concept where you will penalize
the agent if it does something that it is not supposed to do
and reward it in case it does something that leads it to its
goal. Any reinforcement algorithm works in such a way that
it will always try to maximize the agent’s rewards, so if the
agent does something it is not supposed to do, it will receive
a massive negative reward so it learns to not do it again.

In this environment, the agent receives a reward of 1 per
action by default, because the drone needs to be incentivized
to walk and explore the grid. The drone (agent) will receive a
reward of −100000 in case it leaves the grid. This is because
in the early experiments when the reward for leaving the
grid was −1000, the agent would learn that leaving the grid
instantly would give a better reward than searching and not
finding the target since if he left the grid the reward would
be only −1000. Alternatively, if the agent searched and in
the end did not find the person, the reward would be about
−2000. Therefore the reward for leaving the grid was raised
to −100000 so that the agent quickly learns to not leave the
grid.

The agent will also receive a reward of −1000 if it does not
find the target. This is so that the agent is penalized for not
finding the target, but not as much as leaving the grid since
the agent must still be incentivized to look for the target. The
agent will receive a reward of −2000 in case of collision
because the reward needs to be lower than the case in which
the agent does not find the target, otherwise, the agents would
learn to crash so that they don’t get a worse reward.

In case the agent searches, it will receive a reward according
to the probability of the cell, so if the drone searches in a cell
with a probability of 80% the drone will receive a reward
equal to 8000, this is because the agent needs to learn that it
is better to search in higher probability cells rather than waste
time searching in the lower probability areas. This is always
true, except in the case that the probability in the cell is lower
than 1%. In this case, the reward is −100, to disincentivize
the agent to search in low-probability cells.

Finally, if the drone finds the target it will receive a reward
according to (1). This is because the agent needs to be
incentivized to find the target in the fewest moves possible.
So if the total timestep is 500 and it finds the target in the
timestep 480, it will receive a reward of 200. Still, if the
person is found in 100 steps, it will receive a reward of 4000,
greatly incentivizing him to find the target in the quickest way
possible.

r = 10000 + 10000 ∗ (1− timestep

timestep limit
) (1)

Where timestep represents the number count of the action
that is taking place. For example, if an agent executed 50
actions, the timestep is equal to 50. timestep limit is the
number of actions that an agent can do in an episode. An
episode refers to a series of actions an agent takes from its
starting state to its conclusion.

This environment was implemented as a python library [8],
[9], that follows the norms of PETTINGZOO project [10],

with the intention of making it available for future studies.
The source code for this package is also publicly available
on [11]. This repository contains detailed documentation of
the environment, including installation instructions, thorough
descriptions of functions and variables, and an example of
how this environment is to be used.

IV. ALGORITHMS

After developing the environment, a baseline algorithm
was created to be used as a reference point for performance
comparison, to evaluate whether the reinforcement learning
strategy is improving the search effectiveness or not. This
baseline algorithm utilizes multiple drones with pre-defined
search patterns movements. This strategy has been used in
other search and mapping papers, making it suitable for
comparison [7], [12].

Among all the pre-defined search patterns, the Parallel
Sweep Search was chosen as it is usually used in situations
when the search object location is uncertain, and the search
area is large, such as a flat terrain or water, where the area
needs to be divided into sub-areas and assigned to individual
search facilities on-scene at the same time [12].

The Parallel Sweep Search involves traversing a rectangular
search area using parallel movements until the search object
is found, as shown in Fig. 1. If the target is not found and
the agent reaches its last position, the drone starts the Parallel
Sweep Search in the opposite direction backtracking its steps.

To simplify the implementation, the baseline algorithm was
implemented to work only with 1, 2, and 4 drones. When
employing 2 or 4 agents, in order to ensure an equal division
of the terrain, only matrices with an even size can be utilized.
Using just one agent, the drone originates from the top-left
corner of the search area, while using 2 agents, one drone
starts from the origin, and the other begins from the opposite
cell, situated at the bottom-right corner. With four agents,
each drone is positioned at one of the corners of the matrix.
After the drones are positioned, they conduct parallel scans
toward the center of the matrix. This strategic approach aims
to encircle the target, thereby enhancing the likelihood of the
drones successfully locating it. Fig. 1 illustrates this strategy.

Fig. 1. Parallel Sweep representation using 2, and 4 drones

This algorithm has some limitations, such as not conside-
ring the probability matrix and requiring the drone to perform
a search action for each cell in the matrix, increasing the
number of actions needed. Moreover, the algorithm relies on
an equal division of the search area among the drones, making
it impossible to utilize an odd number of drones. For instance,
if there are 5 drones available, only 4 can be effectively
deployed, while 1 would remain idle.

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

066

A. Reinforcement Learning implementation

In this work, we used a policy-based method. Policy-based
methods search directly for the optimal policy by finding the
best policy parameters that map states to actions, aiming to
maximize the cumulative reward [13].

We implemented the Reinforce algorithm [14] in this work
due to its simplicity compared to other methods, serving as
a starting point for investigating connectionist reinforcement
learning. The Reinforce algorithm [14] is stochastic and
incorporates randomness during training and decision-making.
It utilizes a neural network’s output, which represents a
probability distribution of actions, to select the best action for
a given state. Different actions can be chosen for the same
state.

One of the main benefits of this approach is its smo-
oth representation, where slight adjustments to the network
weights result in only small changes to the neural network’s
output. This is in contrast to Value-Based methods, where
small weight changes can lead to different actions [13].

The policy gradient strategy aims to reinforce favorable
actions by increasing the probabilities of actions with higher
returns and decreasing the probabilities of actions with lower
returns. This is achieved by receiving rewards from interac-
tions with the environment. The process continues until an
optimal policy is achieved [13].

The implementation of the Reinforce algorithm was made
with the PyTorch Python library [15]. This library is an
optimized tool for implementing tensors, a multidimensional
array of numbers, for Deep Learning. Furthermore, different
training configurations were determined. More specifically,
three different configurations were created, for one agent, two
agents, and four agents. All the configurations were based
on a 20 × 20 grid and a time limit of 100. The paper [9]
explains why this grid size is a reasonable size for this type
of simulation.

The chosen approach was to use a single Neural Network
for all the drones. This decision was based on the concept that
all agents have the same objective, finding the shipwrecked
person, as fast as possible, without colliding and leaving the
grid. Therefore, regardless of the drone, given a situation and
the position of the other agents, the chosen action should be
the same.

The Neural Network is composed of three fully connected
layers, the first is the input, the second is the hidden, and the
third is the output. The first layer receives the position of the
Drone making the action (one neuron received the X position
in the matrix, and another received the Y position), the
position of the other agents (each represented by 2 neurons,
for the X and Y values), as well as the ten higher probability
cell locations, aiming to decrease the number of episodes
needed to train the neural network, comparing to the entire
matrix.

In the first layer, still, the ReLU (Rectified Linear Unit)
activation function was chosen. The hidden layer was com-
posed of 512 neurons, and the activation function was also
the ReLU. Finally, the output layer was composed of all the
possible actions of the drone, totaling 5 neurons (one for each
action). As each action is represented by a neuron, and only
one action should be chosen, the Softmax (also known as
the normalized exponential function) activation function was

used for the layer, as it returns the probability of each action
being the one to be picked. Also, another hidden layer was
introduced, with 256 neurons and the same ReLu activation
function, enabling more weights to be set, consequently,
improving the performance of the algorithm.

Therefore, based on the above Neural Network, a Reinforce
algorithm was developed. In this algorithm, for each agent in
each step of an episode, an input tensor was generated and
given as input for the Neural Network. Due to the stochastic
characteristic of the algorithm, an action was chosen based on
its probability (the choice, itself, was based on it). Then, the
actions are passed to the environment, and as a consequence, a
reward for each agent is received. Having the rewards, actions,
and states, it is calculated the loss for each agent in each
step. This loss is then used to update the weights in the
Neural Network (trying to minimize it). The training stops
when a total of 300000 episodes is reached, or more than 80
consecutive results above 100000 total rewards are achieved.

V. RESULTS

To measure the success of the algorithm, multiple tests
were executed after the training phase of the neural network,
which took into account different numbers of drones. A neural
network was created and trained for a single drone, two
drones, and four drones. After these three neural networks
were trained, they were each tested, with the objective of
analyzing two specific results.

The initial analysis focused on the collected training data
for all configurations. It revealed the cumulative sum of
rewards and the number of actions taken within each 500
episode interval, as shown in Fig. 2, Fig. 3, and Fig. 4.

Fig. 2. Learning Curve for Configuration 1, using one drone for a 20x20
matrix

Fig. 3. Learning Curve for Configuration 2, using two drones for a 20x20
matrix

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

067

Fig. 4. Learning Curve for Configuration 3, using four drones for a 20x20
matrix

A similar pattern was observed across all configurations,
indicating a consistent learning trend. Initially, the agents
started with low values, gradually increasing over time. This
indicates that the agents learned from their experiences, gra-
dually improving their performance.

The learning curves, combined with the number of actions,
revealed three distinct stages of learning. In the initial stage,
the agents learned to avoid invalid actions, such as moving
outside the grid. Subsequently, they focused on exploring the
environment, as evidenced by a significant increase in the
number of actions. Finally, the agents entered an optimization
phase where they aimed to find the target as quickly as
possible while minimizing the number of actions.

It is also possible to notice that the agents recognized the
correlation between fewer actions and higher rewards. This
observation explains the decreasing trend in the number of
actions over time. The drones learned to optimize their actions
to maximize their overall reward.

By analyzing the three learning curves, it became evident
that the convergence time increased with a higher number of
agents. This outcome was expected since more agents need to
learn optimal actions that maximize their chances of finding
the target while minimizing collisions with other drones. On
the other hand, it can be inferred that the utilization of additi-
onal drones leads to a substantial reduction in the number of
actions. This inference is supported by the observable decline
in the number of actions illustrated in the transition from Fig.
2 to Fig. 3, as well as from Fig. 3 to Fig. 4.

After conducting the learning analysis, comparison tests
were performed on the implementations of the Reinforce and
Parallel Sweep algorithms. For this purpose, experiments were
conducted for the three presented configurations.

The comparison metrics employed included the frequency
of successful target identification, serving as an indicator of
the model’s performance, and the number of actions executed,
which measures the time taken by the drones to locate the
target, an important metric given the time-sensitive nature of
the problem.

Each algorithm was tested 10000 times for each configu-
ration to generate the experimental results. In these tests, the
speed of the castaway assumed values of -0.1, 0, or 1 for
both the x and y axes, chosen randomly in each test, in
order to measure the efficiency of the algorithms for different
directions and orientations that the castaway could assume.
It is important to note that the drones always started at their
initial positions mentioned earlier for each configuration, and

the castaway always started in the middle.
For Configuration 1, Fig. 5 shows a boxplot of the number

of movements the drone takes to locate the target. It can be
observed that the drone takes an average of 46.66 actions,
with a median value of 37 actions to find the person, with a
success rate of 88.2%, while the baseline only achieves 5.1%,
as shown in Fig. 6. This discrepancy for this configuration
is largely due to the limited number of actions within 100
steps, and the drone does not have enough battery to locate
the target. This explains why the average number of actions
for the Parallel Sweep algorithm is 100, as they reached the
maximum number of actions possible without success.

Fig. 5. The distribution of actions quantity per episode, considering configu-
ration 1

Fig. 6. Success rate comparison using Reinforce and Parallel Sweep for all
configurations

VI. FUTURE WORK

Some further exploration and improvements can be addres-
sed for future iterations. Regarding the environment, one of
the biggest limitations is the fact that the shipwrecked person
will not leave the grid if it reaches its edge, but will simply
move around in the corner until the episode is complete.
Second, the drones can not move diagonally, which does not
represent the real world, where the drone is free to move
in any direction. Finally, there is also a limitation with the
ocean’s simulation and the target’s movements. Although it
was sufficient for this project, it may not be for a real-
life situation, so it would be interesting to add a more

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

068

sophisticated way to calculate the probability matrix as well
as a more complex simulation for the target’s movement.

Now regarding the algorithm, there are a few improvements
that can occur. Firstly, it would be interesting to investigate
if different hyperparameters can fine-tune the model and
potentially achieve better performance. Secondly, exploring
if different network architectures and activation functions can
enhance outcomes. The choice of architecture and activation
function significantly influences the model’s performance, and
evaluating alternative options can provide valuable insights.
Additionally, it is important to consider and compare dif-
ferent reinforcement learning algorithms, investigating their
behaviors, step efficiency, and the success rate of each model.
Furthermore, comparing the developed model with other base-
lines, such as greedy search, can lead to profound discoveries
about its relative performance. This analysis will help identify
the strengths and weaknesses of the model and highlight areas
for improvement.

Although the current implementation focuses on a 20x20
matrix, which corresponds to a search area of 3.6 km²,
future work can train the algorithm on matrices of varying
dimensions, in order to ensure that the solution is adaptable
to different search area sizes and can be applied to a wide
range of scenarios. As the search area increases, it is worth
investigating the necessity of applying drone relays, to ensure
uninterrupted communication during drone missions for wide
areas.

Exploring new drone parameters, such as sensors, can
possibly enhance their capabilities, as they can provide data
for various applications, including environmental monitoring
and infrastructure inspections. Moreover, creating defense
mechanisms when drones approach the end of their battery
life is also a possible future enhancement. Implementing fail-
safe mechanisms, such as automatic return-to-home protocols
or emergency landing procedures, can help prevent accidents
or potential damage caused by drones falling due to depleted
batteries.

VII. CONCLUSIONS

The project yielded two distinct outcomes: the development
of an environment and the implementation of the reinfor-
cement learning algorithm. The environment, presented as a
Python package, was designed with the intention of allowing
external researchers to utilize and modify it as needed. This
open approach encourages others to build upon the project,
potentially achieving even more remarkable results than those
demonstrated here. By engaging a wider community, the
utilization of this environment has the potential to drive
further improvements, thereby influencing future algorithmic
advancements.

The algorithm itself, showcased its effectiveness and supe-
riority in solving the given problem when compared to the
predefined parallel sweep approach. The findings provided
proof of concept, supporting the notion that reinforcement
learning strategies outperform predefined paths in terms of
efficiency and effectiveness.

Furthermore, the agents trained using this algorithm con-
sistently demonstrated the ability to locate the target swiftly
across various configurations. This aspect aligns with the
critical need for prompt responses in scenarios involving

shipwrecked individuals. Moreover, scaling up the number
of drones resulted in faster and more accurate responses,
justifying the utilization of multiple agents. However, as
previously mentioned, there are still some enhancements that
can be explored in order to refine the solution’s performance.
Additionally, new scenarios and parameters can also be ex-
plored.

The comprehensive research and implementations carried
out in this project were driven by the desire to advance search
and rescue techniques. As emphasized in the introduction,
the search for individuals lost at sea is both complex and of
utmost importance. By continually exploring and refining new
strategies, search and rescue missions can gradually enhance
their effectiveness, ultimately resulting in more lives being
saved.

REFERENCES

[1] W. H. Organization, “Drowning fact sheets,” 2021, accessed in: Feb.
22, 2023. [Online]. Available: https://www.who.int/news-room/fact-
sheets/detail/drowning

[2] U. S. G. Survey, “The distribution of water on, in, and above
the earth,” 2019, accessed in: Feb. 22, 2023. [Online]. Available:
https://www.usgs.gov/media/images/distribution-water-and-above-earth

[3] DJI, “Drone rescues around the world,” 2023, accessed in: Feb. 25,
2023. [Online]. Available: https://enterprise.dji.com/drone-rescue-map/

[4] E. Eliaçık, “Artificial intelligence vs. human intelligence: Can a game-
changing technology play the game?” 2022, accessed in: Feb. 25,
2023. [Online]. Available: https://dataconomy.com/2022/04/is-artificial-
intelligence-better-than-human-intelligence/

[5] E. T. Alotaibi, S. S. Alqefari, and A. Koubaa, “Lsar: Multi-uav
collaboration for search and rescue missions,” IEEE Access, vol. 7,
pp. 55 817–55 832, 2019.

[6] B. Ai, M. Jia, H. Xu, J. Xu, Z. Wen, B. Li,
and D. Zhang, “Coverage path planning for maritime
search and rescue using reinforcement learning,” Ocean
Engineering, vol. 241, p. 110098, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0029801821014220

[7] D. Schuldt and J. Kurucar, “Maritime search and rescue via multiple
coordinated uas,” U.S. Department of Defense, Defense Technical
Information Center, Tech. Rep. AD1030377, January 2017. [Online].
Available: https://apps.dtic.mil/sti/pdfs/AD1035043.pdf

[8] L. F. Carrete, M. Castanares, E. Damiani, and L. Malta, “Dsse:
Drone swarm search environment,” 2023. [Online]. Available:
https://pypi.org/project/DSSE/

[9] M. Castanares, L. F. S. Carrete, E. F. Damiani, L. D. M. de Abreu,
J. F. B. Brancalion, and F. J. Barth, “Dsse: a drone swarm search
environment,” 2023.

[10] F. Project, “Pettingzoo,” https://pettingzoo.farama.org/, 2023, accessed
in: Mar. 23, 2023.

[11] L. F. Carrete, M. Castanares, E. Damiani, and L. Malta, “Dsse
source code,” 2023. [Online]. Available: https://github.com/PFE-
Embraer/drone-swarm-search

[12] K. CHOUTRI, M. LAGHA, and L. DALA, “A fully autonomous
search and rescue system using quadrotor uav,” International Journal
of Computing and Digital Systems, vol. 10, pp. 2–12, 2021.

[13] R. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[14] R. J. Williams, “Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning,” Machine
Learning, vol. 8, pp. 229–256, 1992. [Online]. Available:
https://doi.org/10.1007/BF00992696

[15] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Köpf, E. Z. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” CoRR, vol. abs/1912.01703, 2019. [Online]. Available:
http://arxiv.org/abs/1912.01703

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

069

