
Analysis of Computer Vision Application in The
Context of SAR Missions

João Custódio de Faria Filho
Instituto Tecnológico de Aeronáutica, São José dos Campos/SP - Brasil

Abstract— This work includes a general feasibility and perfor-
mance analysis of some image classification models for Search
And Rescue (SAR) operations. Since SAR missions are typically
high-wear and high-risk situations for both the victims and the
SAR crew, some teams around the globe have been seeking to
use technology to speed up rescues and reduce damages. The
Croatian Mountain Rescue Service (CMRS) and other SAR
teams have been using Unmanned Aerial Systems (UAS) to
obtain bird’s eye captures of the search area, contrasting with
typical low-altitude manned flies. This paper uses the HERIDAL
dataset images to train, validate, and test models. We used
two different neural network architectures and eight different
training parameters. Accuracy above 98% was achieved, but it
doesn’t necessarily mean that the models are appropriate for
real-life use, so several considerations were made.

Keywords— Search and Rescue (SAR) Missions. Computer
Vision. Performance Analysis.

I. INTRODUCTION

Search and rescue (SAR) missions are defined by the
Canadian Forces and United States Defense Department as
the use of available resources, including machinery, personnel,
and other facilities, to search for people or property that are,
or are feared to be, in distress or imminent danger, and rescue
them to a safe place, besides providing their medical or other
needs [1], [2].

Considering the scope of the given definition, SAR missions
may need to be performed in different contexts and peculi-
arities. Commonly these missions have a large search area
and can last for days. Furthermore, the hostility of the search
environment makes it dangerous for the committed team
and urgent for the victims. Therefore, the use of unmanned
aircraft systems, UAS, or simply drones, equipped with high-
resolution cameras, is a direct solution to conducting an aerial
search, reducing the risks and costs of the mission.

In fact, some SAR agencies have been using drones to
search for people. According to [3], from 2017 to 2020,
at least 59 individuals were rescued by drones from life-
threatening situations in 18 different incidents around the
world. In Croatia, the use of UASs is largely carried out by the
Croatian Mountain Rescue Service, CMRS, which has been
using this tool for over the last eight years, at least. It was
initially restricted to terrain reconnaissance and brief searches
for areas of interest. However, they soon began to be used in
all phases of SAR missions and in different types of terrain.

The success of using drones for SAR missions does not
depend only on well-trained pilots. In fact, the analysis of
captured aerial images also requires specialized teams, to look
for people or relevant evidence.

J.C. Faria F., joaocfariaf@gmail.com

In the case of the CMRS, each searching UAS captures
images every 4 seconds of flight, which means more than 2000
images per day [3]. Also, each captured image corresponds to
a large area, so that a person present would occupy less than
0.1% of the photographed area. In addition, the victims are
often camouflaged, due to the variation of shadows, colors,
reliefs, and elements [3], [4].

The CMRS makes use of its own cloud computing sys-
tem to make the captured images available for analysis by
specialized personnel, taking from 5 to 45 seconds to verify
each image individually, according to [3]. Unfortunately, this
may not be enough. In 2020, there was at least one case of
an unsuccessful CMRS mission even after 10 days of search,
using 6 aircraft and 340 people [3].

In the scope of image analysis, the large number of captures
and the inherent meticulousness make this task prone to
human failure due to fatigue and attention loss. Therefore,
the use of computer vision for the purpose of SAR missions
might be promising.

The main goals of this paper are to train image classification
models in the context of SAR missions, make a critical review
of the considered performance measures and visualization,
and suggest new ones.

The next sections are described as follows. Section II we
provide a brief of works with similar objectives. Section III
describes HERIDAL, which is the data set used. Section IV
describes the considerations taken and the methodology used
to prepare and test the models to achieve the results discussed
in Section V. Section VI describes the final considerations
about this work.

II. RELATED WORK

In fact, in recent years, there were made some research
work publications about the use of computer vision in the
context of SAR missions, such as [3], [4], [5], [6], which are
focused in detecting people in the given images. In the case
of the first two listed works, the scenario is the wilderness
while the last two are focused on SAR missions in the sea.

There are some works in this context that use infrared
cameras in an attempt to detect people by the emission of
this frequency which is related to the characteristic heat of
mammals [6]. Other works sought the use of multispectral
cameras, seeking to combine particular emissions in different
bands [5].

According to [3], in warmer scenarios, such as tropical
forests or the one that operates the CMRS in the summer,
it’s not worth using infrared images or multispectral cameras,
since the environment usually has quite similar radiation
emissions when compared to people. Thus, it lasts to process
common images, obtained by visible radiation.

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

150

(a) Patches. (b) UAS capture.

Fig. 1: Samples of images from HERIDAL.

Despite having been listed here some scientific works invol-
ving computer vision and SAR missions, there are not quite
many works with operational application analysis. In addition,
many works lack images of real missions, due to the difficulty
of obtaining them for research as well as standardizing them
for this purpose. To overcome the lack of real data, as well
as the inherent ethical questions, some works make use of
images of situations simulated by actors, as in [3], and [4],
which uses the images from [7].

Nevertheless, the use of computer vision can be promising
to help in these missions. Not being susceptible to physical or
emotional fatigue and being able to have improved processing
speed with the use of specific hardware.

The present work focuses on the analysis of the application
of computer vision for the detection of people in high-
resolution aerial images obtained by UASs, in the visible
spectrum.

III. DATASET DESCRIPTION

The HERIDAL dataset is used in this work and was first
published by [7]. It was created aiming to tackle the difficulty
of finding specific image datasets for SAR purposes. This
dataset contains bird’s eye captures of simulations of SAR
missions and has already been used by [3] and [4].

In the HERIDAL dataset there are originally three folders:
“trainImages”; “testImages”; and “patches”. In the first and
second folders there are respectively 3, 131 and 205 “.jpg”
files each one related to a “.xml” file in a separated folder
named “labels”. In the third folder, there are two directories:
“negative” and “positive” containing cuts of the images in
“trainImages” and “testImages”, each one of size 81 x 81
pixel. In “positive” directory, there are 29, 050 images with a
person on it. In “negative” directory, there are 39, 700 images
with no person on them. Examples of files in the “patches”
folder are illustrated in Fig. 1a.

The images in HERIDAL were all captured using a drone
of the model DJI Phantom 3, flying at a height of 50 m and
equipped with a camera of resolution of 4000 x 3000 pixel.

These captures were taken from simulated scenes which
were made considering statistical data involving clothing,
positioning, and pose in which children, the elderly, people
with mental illness, hunters, mountaineers, and climbers are
usually found in the area covered by CMRS. All the 36
simulations were done in open areas in the wilderness. With
the guidance of experts, only 4 of them were chosen to be
part of the HERIDAL dataset.

It is worth noting that for the purpose of optimizing the
dataset for training, in each aerial capture, there is at least
one person to be found.

In a real scenario of SAR missions, most of the images will
probably have no person in it. For the purpose of optimizing
the dataset for training models, in each aerial capture in
HERIDAL, there is at least one person to be found, as shown
in Fig. 1b.

IV. METHODOLOGY

In this section we describe the procedure and considerations
taken to explore the images from HERIDAL in terms of
training, validating, and testing classification models and also
other aspects inherently to the considered application.

A. Image Classification

In this subsection, we explain the peculiarities of the work
of building the classification models, which were trained,
validated, and tested using the images in the folder “patches”
of the HERIDAL data set.

1) Network Architectures: The Architecture #1 was already
used by [8] for another classification task. In that context,
the network is trained for image classification solving an
example problem of differentiating images, 150 x 150 pixels,
as containing cats or dogs. For the context of this paper,
the input of the architecture was changed to images with
resolution 81 x 81 pixels.

Fig. 2: CNN architecture from [8].

This network architecture starts with three Convolutional
layers, all having ReLU as its activation function. Also, each
one of these layers is followed by a Max Pooling Layer. This
set of layers is then followed by a fully connected layer,
which also has ReLU as its activation function, and which,
in turn, is followed by the fully connected output layer, with
a single neuron and a sigmoid as its activation function. Fig.
2 illustrates this architecture.

As illustrated, the first and second convolutional layers have
32 filters each, while the third has 64, the same for the hidden
fully connected layer. The max pooling layers have kernels
with dimensions of 2 x 2 pixels, and 1 pixel of stride.

The Architecture #2 was implemented following the exam-
ple proposed by [4]. It starts with a set of two convolutional
layers each one followed by a Max Pooling Layer. This
set of layers is then followed by two other convolutional
layers and a fully connected layer, which is connected to the
fully connected output layer, with a single neuron. All the
convolutional layers and the hidden fully connected layer have
ReLu as activation function. The output layer has a sigmoid
as its activation function. Fig. 3 illustrates this architecture.

As illustrated, the first and second convolutional layers have
32 filters each, while the third and fourth have 64 filters, as
the hidden fully connected layer. The max pooling layers have
kernels with dimensions of 3 x 3 pixels, and 3 pixels of stride.

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

151

Fig. 3: CNN architecture from [4].

2) Model Fitting and Evaluating: The set of patches was
divided in three subsets: train, validation and test, each one
with 60%, 20%, 20%, respectively. The split of patches
between each one of these subsets was made maintaining the
original proportion between “negative” and “positive”.

In terms of the learning task, each architecture is explored
using two learning algorithms. The first one is the Root Mean
Square Propagation Algorithm with ρ = 0.9 and a learning
rate of 0.001 as used by [8]. The second one is the Stochastic
Gradient Descent Algorithm with the same learning rate,
which was also used by [4] to achieve an accuracy of 99.21%
with Architecture # 2.

Given these two learning algorithms, we also need to define
the batch size used to perform the learning task. In this paper,
we test some different values of batch size, which due to
hardware limitations was m′ ∈ {16, 32, 128, 256}.

After that, we need to define the number of steps per
epoch and the number of epochs. To guarantee that the
training process uses the entire training set, the number of
steps is ⌊m/m′⌋, with m being the number of examples.
The number of epochs was fixed at 70, since it does not
cause overfitting and also provides a suitable training time.
Comparing these training variations, one best model is chosen
for each architecture taking the accuracy as the parameter. In
this case, since the classes are almost balanced, accuracy is a
reasonable performance measure for the classification task.

3) Real life considerations: In HERIDAL there are appro-
ximately 3 positives for each 4 negatives patches, which would
mean that looking for a lost person in any area corresponding
to a patch will be successful approximately 42% of the time.
However, as mentioned by [3], in real SAR missions, the
number of negative patches is usually much greater than that
of positive ones. That is why the search part is also hard in
a SAR mission, and why works like this one can be really
helpful.

Considering the data set limitations and the fact that the
expected proportion of ”positives”and ”negatives”can be very
different depending on the causes of the mission, in this paper
we explore different proportions for testing the models. Thus,
there are extra sets with the same negative patches but with
a number of positive ones 10γ times smaller. The sets are
named “test γ”, with γ ∈ {0.5, 1.0, 1.5, 2.0}.

In these contexts, accuracy is no more an adequate per-
formance measure, since a model that classifies all inputs as
negative would also achieve a high rate. Thus, the total of
true negatives is not a very relevant measure and we might
consider a trade-off between precision and recall.

A high recall rate would mean that almost no victim
would be left behind by the algorithm. However, this could
result in a model that indicates almost all inputs as positive,
which signifies time wasted in false alarms which diminishes
the success chances of the mission wasting resources and
prolonging the time that the victims are exposed to danger.

A high precision rate indicates that if the algorithm had
classified an input as positive, it is probably true. This means
less resource wasting in false alarms, but can also mean that
some victims would be left behind in the mission, as the model
will neglect them.

Fβ is a performance measure that is a trade-off between
precision and recall weighted by the parameter β,

Fβ := (1 + β2)× Precision × Recall
β2 × Precision + Recall

. (1)

The ideal value of β is not easily determinable and should
depend on the nature of the application and operation parti-
cularities that are beyond the scope of this work.

If the model is, for example, supposed to be embedded in
a UAS that can drop a medical kit if the region is classified
as positive, then the priority should be precision and β should
have a small value, since false positives would imply in great
losses for the mission. However, if the model is supposed to
recommend areas for an operator at the base and the search
is for only one missing person, then, a greater value of β
should be considered, as the operator action limits the losses.
Thus, in this part of this work, we explore different values of
β using a graphical approach.

B. Sliding Window

After training and testing different neural network models
to classify patches and choosing the best one, we need
to consider a methodology to extract the patches from the
original images if we want to consider their use in a real
situation. In the context of this work, the strategy chosen was
the sliding window method which is used in the images from
in the folder “trainImages” and “testImages”.

The Sliding Window approach consists of classifying pieces
of the original image individually using a model. The name
window comes from the fact that at each classification step,
only a part of the original image is considered, while the rest
is ignored, just like if the image is seen through a window.
This window has a fixed dimension, which in this case is 81
x 81 pixel as it is the size of the input of the architectures
described in IV-A.1. As the window slides, other parts of
the image are seen and classified by a classification model.
The way that the window slides is determined by the strides
parameters in both of the image dimensions. In this case, the
stride parameters are 80 pixels and 75 pixels in the horizontal
and vertical directions, as it takes 50 steps to slide horizontally
and 40 steps to slide vertically, considering the dimension of
the images, as described in the section III. Thus, for each
image, there will be necessary 2000 steps.

In terms of the applying operations at separated regions
in the image, the Sliding Window is quite similar to the
convolution operation. However, in this case, the operation
does not use padding and the local operation is a classification
instead of a matrix multiplication. As one or more patches of
the image are classified as positive, the localization is also
informed, since the coordinates of the window are given.

In this part of the work, the evaluation consists only in
terms of the time taken to classify all the regions proposed by
the Sliding Window approach. Also, since all the variations
explored in IV-A.2 do not interfere with the complexity of
each classification operation, except for the architecture of

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

152

the network, the comparison relies only on the differences of
time considering the two .

V. RESULTS AND DISCUSSION

All algorithms used in this paper run on a notebook equip-
ped with an Intel® Core™ i7-8550U 1.8 GHz with Turbo
Boost up to 4.0 GHz, 8 GB DDR4 memory, and NVIDIA®
GeForce® MX130 with 2GB VRAM, which is a hardware
configuration quite less powerful than the used by [4]. In
that case, the available hardware was a workstation equipped
with an Intel® Xeon® E5-2640v4 of 3.40 GHz, 4 x 16 GB
DDR4 memory, and multi-GPU 4 x NVIDIA® GeForce®
GTX 1080Ti Turbo with 11 GB memory.

A. Image Classification

As detailed in IV-A.2, both the architectures described
IV-A.1 were tested considering the accuracy after training
the model with different parameters. Results referring to the
tests with both architectures are presented in tables I and
II. The column “Time” refers to the time spent to train
the correspondent model using the correspondent training
parameters.

TABLE I:
Tests from IV-A using Architecture #1.

Optimizer Batch Size Time (hh:mm:ss) Accuracy (%)

SGD

256 00:56:39 87.14
128 00:57:16 90.65
32 01:06:21 96.57
16 01:18:42 97.81

RMSProp

256 00:57:27 98.69
128 00:58:07 98.25
32 01:08:05 95.38
16 01:21:49 90.78

TABLE II:
Tests from IV-A using Architecture #2.

Optimizer Batch Size Time (hh:mm:ss) Accuracy (%)

SGD

256 00:43:45 88.63
128 00:44:38 87.52
32 00:53:19 97.50
16 01:04:08 98.36

RMSProp

256 00:43:47 98.86
128 00:44:23 98.71
32 00:53:09 96.33
16 01:05:51 85.74

Considering an operational application, as the scenario of
the mission is much variable, the team should consider, if
possible, training the pre-trained model with some inputs of
the current mission or that of a similar mission, so that the
model becomes more adjusted to the current purpose. Thus,
the time spent to train the model could be a relevant parameter
to consider. Analyzing each architecture individually, the time
spent is very influenced by the batch size. This makes sense
since a smaller batch size means more steps per epoch as
⌊m/m′⌋ gets a higher value as m′ gets a lower one. With a
fixed number of epochs, the number of total steps gets higher
and, also, the time to train the model, since more gradient
descent steps mean more mathematical operations to estimate
the gradient and update the parameters by back-propagating,
thus more time spent. Furthermore, a smaller batch could
mean a higher cost of time even without meaning a higher
computational cost, since it reduces the possibilities of parallel

processing. The choice of the optimizer does not seem to
impact much of the time spent, this is true because the cost
difference between them is caused by a few multiplications.

In terms of accuracy, considering the use of SGD for both
architectures, the number of steps seems to be quite relevant.
Thus, the accuracy tends to be higher as the batch is lower.
This makes sense since SGD algorithm runs with a learning
rate of 0.001 which means that each parameters’ update
is a tiny step in the direction of decreasing the estimated
gradient. As the batch gets smaller the statistical relevance
of the m′ considered elements also decreases and becomes
more probable to get a bad estimation for the gradient and to
struggle to converge. However, the small learning rate makes
each step have reduced impacts individually, preventing this
problem from happening.

As the RMSProp consists of a strategy of “incrementing”the
learning rate by using the historical data of the gradient so that
the algorithm converges more rapidly in bowl-shaped regions,
it is more sensitive to the possible abrupt variations in the
estimation of gradient considering small values of m′. Thus,
it might struggle to converge to a higher accuracy with a small
batch size, even spending many steps. However, considering
greater batch sizes, this optimizer makes it possible to achieve
high accuracy values with a relatively low cost of time. The
choice of a good batch size should consider the hardware li-
mitations and the equilibrium between the statistical relevance
of each batch and the time needed to achieve high accuracy.
For each situation, there should be at least an “optimum
interval”for batch size values, so that smaller or bigger sizes
would mean, respectively, much more time to train or much
less accuracy, due to the reduced number of steps per epoch.
In this case, the interval from 128 to 256 appears to be a
good choice for an ”optimum region”for batch sizes, since
there is not much difference in terms of accuracy or time,
however. Also, it’s important to point out that these results are
subject to fluctuations due to the randomization of the choice
of batches and depend on the characteristics of the dataset
and the hardware. In this case, larger batch sizes could not be
tested due to memory limitations.

It’s notable that thanks to the RMSProp algorithm, the both
best models in terms of accuracy had taken a time to train
quite close to the smallest time taken for each architecture.
Also, in terms of accuracy achieved after training, both
architectures are basically equivalent, the values measured will
probably fluctuate due to the random choices of batches.

However, it is noticeable that in terms of time to train, the
Architecture #2 is clearly faster than the Architecture #1. In
fact, considering tables I and II, and comparing the time to
train between cases with the same optimizer and batch size, on
average, the time to train of Architecture #2 is (21.30±2.01)%
smaller. This difference in time can be due to the reduction of
dimensionality that is more accentuated in the pooling layers
of Architecture #2, since the strides are bigger.

B. Real Life Considerations
Since the ideal value of β to consider in Fβ is not trivially

deduced, in this section, we propose a graphical visualization
of Fβ as a function of β2 (see 1), so we can visualize the
variation of the function for different choices of β2.

Since 0 ≤ β2 < ∞, we display the graphics in two separate
intervals and display them side-by-side. On the left side, we

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

153

TABLE III:
Aβ for each domain, γ and architecture.

Architecture β2 γ = 0.5 γ = 1.0 γ = 1.5 γ = 2.0

#1
[0, 1[0.973 0.934 0.933 0.602
[1,∞[0.977 0.961 0.960 0.774

#2
[0, 1[0.969 0.915 0.914 0.535
[1,∞[0.978 0.953 0.949 0.726

plot the graph of Fβ vs β2, considering β2 ∈ [0, 1[. On the
right side, we plot the graph of Fβ vs 1/β2, considering 1/β2

∈]0, 1] with the x-axis inverted so that the combination of the
plots looks continuous.

The segregation of the β2 values in the given intervals has
also meaning considering the signification of β2 being in one
of these. If β2 < 1, then the value of Fβ depends more on
precision than on recall, which is equivalent to saying that
in the operations at which the ideal value of β2 is smaller
than 1, precision is more relevant than recall. Analogously,
for β2 > 1, the value of Fβ depends more on recall than on
precision. In terms of limits, from 1:{

limβ2→0 Fβ = Precision
limβ2→∞ Fβ = Recall

.

To provide a single value to evaluate the performance of
a model in terms of Fβ in a given interval of variation of
β2, we also calculated the area under the curve of Fβ as a
function of β2 or 1/β2 (it might be helpful to consider Aβ

as the area under the curve of Fβ divided by the length of
the considered interval of β2 or 1/β2, but as both intervals
considered here have length 1, we don’t need to care about
it). This score is referred to here as Aβ and is estimated by
the sum of the areas of the trapezoids defined in the graph
by taking 200 equidistant points at it]0, 1[. For each plot,
0 ≤ Aβ ≤ 1.

The closer Aβ is to 1, the better the model. If Aβ is high-
valued, then the model achieved a high-valued Fβ for all
β2 in the given interval. However, if the value of Aβ is not
high enough for the considered task, we should investigate the
reasons for it since Fβ could have remained almost constant
in a low value, or it can have assumed high values in a sub-
interval and very low values in another.

In these terms, Aβ is similar to Fβ which also does not
have a defined meaning when it gets low values, since it can
mean low precision, low recall, or even both. On the other
hand, a high value of Fβ means high precision and recall.
Thus, a high value of Aβ means high enough values of Fβ ,
then also precision and recall, in the considered interval of
variation of β2.

The table III presents the calculated values of Aβ for each
architecture in the variety of domains and values of γ. The
Fig. 4 shows the proposed visualization of Fβ for γ = 2.0.

In Fig. 4, the dashed black line stands for a dummy model
that classifies the inputs as positive randomly with probability
equal to the relative frequency of positives in the data set. The
thin yellow and red lines represent the trained model with
thresholds equal to 0.005 and 0.995, respectively. The blue
line represents the trained model with a threshold equal to
0.5 and is the one that is considered by default.

Comparing the results of Fβ achieved by the best models of
the two network architectures with that of the dummy model,
the latter performs much worse than both of the best models

(a) Architecture #1, β2 < 1. (b) Architecture #1, 1/β2 < 1.

(c) Architecture #2, β2 < 1. (d) Architecture #2, 1/β2 < 1.

Fig. 4: Plots of Fβ with γ = 2.0 for the most accurate models.

in all the scenarios proposed except for (1/β2 → 0, which
implies Fβ → Recall = 1, for the dummy model. However,
in operational terms (1/β2 → 0 makes no sense at all since
it would mean that a model that gives no false negatives but
lots of false positives, which costs time and human resources
in a real SAR mission, is better than another model that
gave only one false negative. In terms of Aβ , the dummy
model performs better in the interval (1/β2) < 1, since it
means more relevance to the recall, and also performs better
in scenarios with more positive inputs, as it implies higher
precision. Even though, in average, considering all the plots,
the Aβ for the best models of both architectures is around
9 times bigger than that of the dummy model, which is a
first, but not too meaningful, sanity check for the use of these
models.

Both architectures achieved Aβ > 0.90 except for γ =
2.0. This indicates that for any optimal choice of β the
performance of the algorithm should be, at least, around 0.90
as measured by Fβ , which indicates some robustness of the
models in all but one of the tested scenarios.

As we got γ = 2.0, the Aβ value drops significantly, as can
be seen in Figs. 4a, 4b, 4c and 4d. This indicates that both
models will probably perform poorly with γ > 2.0, for most
choices of β, except for 1/β2 < 0.1, which is probably a bad
choice, since Fβ ≥ 0.9 can be achieved with Precision =
0.45, for example.

According to [3], more than 2,000 aerial images are taken
on a typical day in a search mission. Each image of HERIDAL
has a resolution of 4,000 x 3,000 pixels, which means a
minimum of 1,900 patches with resolution 81 x 81 pixels
to cover up all the images completely.

Considering that all the patches classified as positive by
the model are inspected by an operator that checks the given
classification in only 2 s, the estimated time spent with false
positives is given by t = FPR×2,000×1,900×2s, with FPR
denoting the false positive rate. We express FPR in terms of
precision and γ as:

FPR =
1

10γ + 1
×

(
1

Precision
− 1

)
. (2)

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

154

TABLE IV:
Time to verify one image as in IV-B.

Architecture Average Time (s) STD (s)
#1 101.07 1.21
#2 100.69 1.32

Thus, with γ = 2.0 and Precision = 0.45 the working
time wasted with false positives will be around 26 hours per
day. As Aβ diminishes as γ increases, we can expect that both
the models will not be good enough for γ ≥ 2.0.

In real situations, the corresponding value of γ is probably
greater than 2.0. In the context of the CMRS, there are 1,900×
2,000 patches per day, with γ = 2.0, this means that if the
total area corresponds to 1% of the pictures, there will be
380 missing people, which is much more than the maximum
occupancy of most airplanes.

Also, airplane accidents are not a common cause for SAR
missions in the context of CMRS. so both models appear not
to be a good choice in this context. However, this result should
be evaluated again with a larger test set, with more positive
and negative examples, so that the conclusions could have
more statistical relevance.

C. Sliding Window

As described in IV-B, in this section we take the most
accurate model of each architecture tested in the previous
section and use it in a sliding window approach in the images
captured by the UAS available in the HERIDAL dataset. The
objective of this stage is to measure the time taken to evaluate
an image using a sliding window and the classification models
trained in the previous section in order to compare with the
time taken by a human operator and that of [4]. Table IV
gives the results achieved in this stage.

Considering the results in table IV, none of the architectures
performed significantly better than the other one. In fact,
considering the error margin of the measure, given by the
standard deviation, both architectures have similar times to
analyze a picture completely. However, the average time taken
for visual inspection of one image is 43.68 s, and that of the
proposed model by [4] is less than 15 s. Thus, this approach
is approximately 2.3 times slower than a human operator and
6.7 times slower than the model proposed by [4].

However, this difference is not sufficient to discard this
approach for operations. In terms of operational costs, the time
taken is relevant but also is the price of the hardware used,
since this time taken can be reduced using a better hardware
unit or multiple units with cheap hardware working in parallel.
Thus, for a better comparison with the result achieved by
[4] we should consider testing both approaches in similar
hardware.

For operational purposes, the approach needs to be tes-
ted with the available devices and considering the specific
application that is been proposed. For example, in the case
of the work of the CMRS the requirements of cost of time
and memory are probably easier than the ones that would be
needed if the model was supposed to be embedded.

VI. CONCLUSION

In terms of accuracy, the models achieved similar results
compared to [4] and are quite equivalent, even with all

the variations considered. However, the models based on
[4], needed an average training time (21.30 ± 2.01)% less
than that based on [8], which is a significant advantage if
more numerous training data sets are considered. In terms of
optimizer, significantly less time was taken to achieve high
accuracy rates using RMSProp as compared to using SGD.

Considering the evaluation of 4,000 x 3,000 pixel images,
the time taken was about 2.3 times greater than that by a
human operator and about 6.7 times greater than that by
the approach of [4]. It is worth noting the difference in the
hardware available for this work and that one for [4]. In real
life, the analysis should be done using the available hardware
for a SAR team. Thus, future work can be done in this
direction or aiming to determine minimum hardware requests
to achieve operational objectives.

The analysis carried out using Fβ concluded that the models
are not suitable for real situations. However, this affirmative
needs to be tested with greater statistical relevance, since the
measure done is very susceptible to noise since there are only
tens of positive inputs in the entire test set.

Even with a better test set, we would still need to find a
good β2 value or interval, which can be analyzed with Aβ .
To determine β2, the victims, the accident, the equipment,
and the personnel, must be considered. Suppose a data set
like HERIDAL, built through sufficiently realistic simulations
with 100 actors of an accident in conditions that at every hour
the victims’ chances of survival reduce by 1%. Considering
2,000 pictures per search day and knowing the proportion of
positive patches, we can make an estimation of the time spent
with false positives and the decay in life expectancy of the
victims. The “ideal” β2 can calculated with the ratio between
these expected life/time costs.

In general, works like this can be quite relevant for impro-
ving SAR operations. However, for the evaluation of models,
definition of metrics, and feasibility studies, more specific
studies would be needed with previously calculated statistical
data for the considered contexts.

REFERENCES

[1] C. Forces, “National sar manual,” 1998. [Online]. Available:
https://web.archive.org/web/20080803015913/http://www.casaraontario.
ca/∼webmaster1/Manuals/NationalSARmanual full english.pdf

[2] U. D. of Defense, “U.s. department of de-
fense directive number 3003.01,” 2011. [Online]. Avai-
lable: https://www.dco.uscg.mil/Portals/9/CG-5R/nsarc/DoDI%203003.
01%20DoD%20Support%20to%20Civil%20SAR.pdf

[3] S. Gotovac, D. Zelenika, Ž. Marušić, and D. Božić-Štulić, “Visual-based
person detection for search-and-rescue with uas: Humans vs. machine
learning algorithm,” Remote Sensing, vol. 12, no. 20, 2020. [Online].
Available: https://www.mdpi.com/2072-4292/12/20/3295

[4] M. Kundid Vasić and V. Papić, “Multimodel deep learning for person
detection in aerial images,” Electronics, vol. 9, no. 9, 2020. [Online].
Available: https://www.mdpi.com/2079-9292/9/9/1459

[5] E. Lygouras, N. Santavas, A. Taitzoglou, K. Tarchanidis, A. Mitropoulos,
and A. Gasteratos, “Unsupervised human detection with an embedded vi-
sion system on a fully autonomous uav for search and rescue operations,”
Sensors, vol. 19, p. 3542, 08 2019.

[6] A. J. Gallego, A. Pertusa, P. Gil, and R. Fisher, “Detection of bodies
in maritime rescue operations using unmanned aerial vehicles with
multispectral cameras: Gallego et al.” Journal of Field Robotics, vol. 36,
12 2018.

[7] D. Božić-Štulić, Ž. Marušić, and S. Gotovac, “Deep learning approach
in aerial imagery for supporting land search and rescue missions,”
International Journal of Computer Vision, vol. 127, pp. 1–23, 09 2019.

[8] F. Chollet, “Building powerful image classification models
using very little data,” 2016. [Online]. Available: blog.keras.io/
building-powerful-image-classification-models-using-very-little-data.
html

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

155

https://web.archive.org/web/20080803015913/http://www.casaraontario.ca/~webmaster1/Manuals/NationalSARmanual_full_english.pdf
https://web.archive.org/web/20080803015913/http://www.casaraontario.ca/~webmaster1/Manuals/NationalSARmanual_full_english.pdf
https://www.dco.uscg.mil/Portals/9/CG-5R/nsarc/DoDI%203003.01%20DoD%20Support%20to%20Civil%20SAR.pdf
https://www.dco.uscg.mil/Portals/9/CG-5R/nsarc/DoDI%203003.01%20DoD%20Support%20to%20Civil%20SAR.pdf
https://www.mdpi.com/2072-4292/12/20/3295
https://www.mdpi.com/2079-9292/9/9/1459
blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

	Introduction
	Related Work
	Dataset Description
	Methodology
	Image Classification
	Network Architectures
	Model Fitting and Evaluating
	Real life considerations

	Sliding Window

	Results and Discussion
	Image Classification
	Real Life Considerations
	Sliding Window

	Conclusion
	References

