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Abstract— This research investigates the feasibility of em-
ploying adversarial filtering techniques to counter evasion at-
tacks on a Support Vector Machine malware detection mo-
del. Exploring the feasibility of packed use and the potential
differences in performance when incorporating the adversarial
classifier before or after the primary model. The research
aims to demonstrate the efficient operation of the models on
a host machine while utilizing medium to lower computational
resources.
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I. INTRODUCTION

Machine Learning has become an excellent tool for clas-
sifying malware areas, bringing about a significant transfor-
mation in this domain, principally because of its generali-
zation power when working with a lot of data. However,
with new attacks aimed at circumventing these protective
measures, the focus has shifted to the targeted system and the
methodologies employed during the classification to safeguard
against such threats. Adversarial attacks specifically exploit
the vulnerabilities in these methodologies[1][2], making them
fragile to misclassification. These attacks involve deliberately
introducing adversarial samples or some kind of noise[3] into
the training dataset or manipulation of malware features to
evade the protection mechanisms[4].

Moreover, given the paramount significance of informa-
tion security and the pervasive presence of mobile devi-
ces, particularly within households where at least one cell
phone is typically found, it becomes imperative to address
potential vulnerabilities. In the present era, cell phones are
a multifunctional tool enabling individuals to manage their
financial transactions, store personal data, and access sensitive
information. Consequently, any breach in security concerning
these devices necessitates a thorough investigation.

Adversarial attacks, posing a significant threat, have emer-
ged as a novel approach to circumvent existing malware
protection mechanisms[5]. These attacks capitalize on the
utilization of known malicious artefacts and exploit specific
scenarios to achieve their objectives without being detected.
Considering the evolving landscape of security threats and the
heightened sophistication of adversaries, it is crucial to delve
into the study and understanding of adversarial attacks in the
realm of malware detection.

Throughout our research, we investigated existing fra-
meworks that incorporate an adversarial classifier as a system
component. Notably, prior works have utilized an adver-
sarial classifier either within an ensemble model or as a
component[6]. However, none have employed the adversarial
classifier as a direct filter to assess the efficacy of this novel
system.
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Our study focused on integrating a classifier model directly
into a malware classifier for the Android Operating System.
We specifically examined performance variations from incor-
porating the adversarial classifier before or after the primary
model. We aimed to analyze these variations and gain insights
into how integrating the adversarial classifier at different
stages of the model architecture impacts its effectiveness.

A. Our Contributions

In this paper, we make the following contributions. First, we
evaluate the precision and recall of the SVM model used for
malware classification and the variation of that metric values
when adversarial samples are injected. Secondly, we assess the
time required to train both the primary classification model
and the adversarial filter model. Additionally, we explore the
feasibility of utilizing an ensemble or combining the primary
classification model and the adversarial model to operate
efficiently on a host machine, such as a conventional personal
computer, while optimizing the utilization of medium to lower
computational resources.

II. BACKGROUND KNOWLEDGE

A. Adversarial Examples

Some machine learning algorithms’ inputs are designed to
confound their functionality and increase the likelihood of
misclassification[7]. For instance, a machine learning algo-
rithm classifies an image as a ”table class”. We can generate
some noise and inject it into that image to change the
classification of the same algorithm to a ”door class”.

B. Problem Space and Feature Space

When dealing with artifacts such as malware or images,
we need to transform them into feature vectors. The Pro-
blem Space comprises problems where we manipulate feature
vectors without considering the transformation of real-world
artifacts. The Problem Space becomes evident when mutations
have functional implications in the real world. This means an
artifact is transformed into a feature vector, altered with noise,
and then transformed back into a fully functional real-world
artifact[8].

C. Inverse Feature-Mapping Problem

Transitioning from Feature Space to Problem Space beco-
mes complex when features change. As most attacks involve
changes in the Feature Space, converting these new features
back into fully functional code poses a significant challenge
when dealing with adversarial attacks[9].
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D. Evasion Attacks

Evasion Attacks occur when changes are made to the
artifact’s structure to replace the original features’ information
with other data, introducing perturbations or injections. This
alteration aims to confuse the machine learning model’s
classification. These attacks can take place in either Fea-
ture or Problem Space. However, it’s crucial to note that
they are subject to constraints specific to the domain of
the artifact. For example, if an evasion attack is performed
on a malware artifact, it should demonstrate that specific
manipulations can compromise the application’s integrity or
malicious functionality[10].

Fig. 1. Evasion Attack.

As we can see in Fig. 1, in a generalist classifier model
using machine learning to detect malware, we must convert a
real-world artefact to a feature-space artefact represented by
a vector of features. This vector of features is an input to a
classification model, and this one answers their class. When
we have an Evasion Attack, the technique (Mimicry, AT-MA
or others) creates some perturbation in that feature till the
classification model points to the wrong class.

E. Poisoning Attacks

Machine learning models rely on the assumption that
training data exhibits particular statistical properties, enabling
accurate predictions. However, this assumption opens the door
to false presumptions and experimental biases[11], especially
when training data is manipulated through techniques like
poisoning attacks.

Fig. 2. Poisoning Attack.

Poisoning attacks introduce malicious or adversarial sam-
ples into the training dataset to deceive the model during

learning. By strategically altering the training data, adversaries
can exploit the model’s reliance on statistical properties and
lead it to make incorrect or biased predictions[8].

As we can see in the Fig. 2, if we inject some well-
crafted data in the extracted features used to train the malware
classifier model, we could create some specific errors during
the training phase of the model, and it could be used to baffle
the classification during the test phase of a malware. That
way, the adversarial attack can benefit a lot of malware class,
despite the evasion attack, which benefits only that specific
malware.

III. RELATED WORKS

We review adversarial attack methods from the defender’s
perspective, focusing on preview works that used a system
with or without adversarial classifier versions. [6] uses an
adversarial classifier as part of an Ensemble Model, but
defining the rule of results combination as an ensemble model
is essential. In [10], the research uses the adversary detector as
an auxiliary ML model and uses it after the malware detector.
Furthermore, as an adversary detector, they use a Deep
Neural Networking based Machine Learning Classifier Model,
making processing more costly on a personal computer. In
[9], the authors proposed a novel of attack and a way to
realize the specific inverse feature-mapping, using the weight
of the functions and their correspondence with the features.
In [12], they create feature-extraction rules of android APK
applications and elaborate a classifier system using an SVM
model. The features extracted from Drebin are static, and
there are many ways to bypass static feature classifiers during
the execution time. However, the static features are a good
resource because the most preview works in our scope, the
adversarial attacks changed the characteristics of the artefact,
which is detected in static feature-extraction.

IV. EXPERIMENTS AND EVALUATION

A. Experimental Setup and premises

To conduct our experiment, we established specific premi-
ses to ensure the validity of our approach. In the context of
protection, we assumed that the Inverse feature mapping was
resolved in the adversarial malware being used. This implies
that the samples we considered are fully functional in terms of
their malicious behaviours. Additionally, we treated our data
as Independent and Identically Distributed (IID), ensuring that
there was no data leakage during both the training and testing
phases of our models.

To simulate a Personal computer, it was used a computer
with i7 7th generation with 16 GB of ram.

The malware and goodware samples were downloaded from
Androzoo API[13], and the feature-extraction was made using
the definitions of Drebin Dataset[12] and the implementations
presented in [6].

1) Feature Extraction: In this work, we used a Feature-
extraction based on Drebin Dataset[12]. Their feature repre-
sentations are based on information about permissions, API
calls, intent filters, string analysis and code analysis of an
Android’s APK file.

Permissions: The analysis of the requested permissions by
the application, declared in the AndroidManifest.xml.
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API calls: Analysis of the interaction with the Android
system and external resources (API calls).

Intent Filters: Investigation of the types of intents the
application can handle and that used to exploit the system.

String Analysis: Examination of strings inside the applica-
tion’s code and their resources. Specific keywords, obfusca-
tion or encryption may be identified through string analysis.

Code Analysis: The analysis of code’s structure, control
and data flow.

All of that information was converted into a matrix of
features. The most important information is defined when their
matrix is changed into a TF-IDF matrix, keeping only the
recurrent information during the analysis[14].

2) Scenarios and Data: The evaluate the premises, it was
generated adversarial attacks against a basic DNN classifier
model using a Projected Gradient Descent(PGD) with Adam
Optimization[15](AT-MA) and a Mimicry attack[16]. We used
800 malware samples downloaded from Androzoo API to
generate the adversarial samples.

Gradient-Based Attack: It is a white-box attack (it needs
to know the target classifier) that uses the gradient of the
classifier’s loss function.

Mimicry Attack: It is a gradient-free attack and occurs
when we perturb a malware example until it mimics the
goodware (benign sample) behaviour.

A Support Vector Machine (SVM) Technique is trained
to create the classifier model with 16.000 malware samples
and 20.000 goodware samples. The experiments were made
with SVM model because of their ability to handle high-
dimensional and not linearly separated data. Furthermore,
despite the dataset being balanced, malware datasets normally
are not balanced in the wild, and we used a model that
performs well with unbalanced data.

B. Evaluating the results acquired

1) Basic training of the Model: During this phase, we have
trained the Classifier model (SVM), with 16.000 malware
samples and 20.000 goodware samples, using the squared
hinge loss function. To that work, using the setup referenced,
it costs 7.54 seconds of training and the following results:

TABLE I

RESULTS - TRAINING MAIN MODEL

Precision Recall F1-score
Malware 0.83 0.93 0.88

Goodware 0.92 0.80 0.86
Avg / Total 0.8691 0.87 0.87

After that, we trained the Adversarial Classifier Model we
wanted to test with the primary classifier. To build that model,
we used an SVM technique trained with 800 adversarial
malware focused on Deep Neural Network classifier models
and 780 non-adversarial malware to create the adversarial
ones, and we used a split of 30%. That dataset was modelled
to harden the detection of adversarial samples despite the
non-adversarial ones. The time used for its training was 1.12
seconds.

So, we have made the same before but focused on AT-
MA adversarial attacks. That dataset was modelling trying
to harden the detection of adversarial samples despite the

TABLE II

RESULTS - TRAINING FILTER MODEL TO MIMICRY ATTACKS ADVERSARIAL

SAMPLES

Precision Recall F1-score
Malware Non Adversarial 1.0 0.98 0.99

Malware Adversarial (Mimicry attack) 0.98 1.0 0.99
Avg / Total 0.9916 0.99 0.99

TABLE III

RESULTS - TRAINING FILTER MODEL AGAINST AT-MA ADVERSARIAL SAMPLES

Precision Recall F1-score
Malware Non Adversarial 1.0 0.99 1.0

Malware Adversarial (AT-MA target) 0.99 1.0 1.00
Avg / Total 0.9957 1.0 1.0

non-adversarial ones. The time used for its training was 1.22
seconds.

After that phase, when we trained the models and compa-
red the result for the primary classifier and the adversarial
classifiers, we started the experiment’s second phase, testing
the models’ detection against adversarial samples.

TABLE IV

DETECTION OF ADVERSARIAL SAMPLES (DNN TARGET)

Precision Recall F1-score
Malware Adversarial (DNN target) 0.77 0.62 0.69

Goodware 0.63 0.78 0.69
Avg / Total 0.71 0.69 0.69

TABLE V

DETECTION OF ADVERSARIAL SAMPLES (AT-MA TARGET)

Precision Recall F1-score
Malware Adversarial (AT-MA target) 0.81 0.79 0.8

Goodware 0.75 0.78 0.77
Avg / Total 0.9957 01.0 1.0

The last phase of experiments tested the adversarial samples
(Mimicry and AT-MA) and Non-Adversarial Malware in the
main classifier. The objective of that experiment phase was
to verify the behaviour of the main classifier when it needed
to classifier malware, and there were adversarial samples in
there. During that phase, we had the following results:

TABLE VI

TEST OF ADVERSARIAL MALWARE(MIMICRY) AND NON-ADVERSARIAL MALWARE

AGAINST THE MAIN CLASSIFIER MODEL

Precision Recall F1-score
Non Adversarial Malware 0.54 0.74 0.62

Adversarial Malware(Mimicry) 0.40 0.62 0.53
Avg / Total 0.47 0.68 0.58

TABLE VII

TEST OF ADVERSARIAL MALWARE(AT-MA) AND NON-ADVERSARIAL MALWARE

AGAINST THE MAIN CLASSIFIER MODEL

Precision Recall F1-score
Non Adversarial Malware 0.48 0.74 0.58

Adversarial Malware (AT-MA) 0.55 0.79 0.71
Avg / Total 0.52 0.77 0.65
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V. DISCUSSION

With the preliminary results, we observed that an SVM
model trained solely on Adversarial and non-Adversarial
malware, used to generate the former, achieved nearly 100%
precision in detection, as shown in Tables II and III. This
observation is crucial because it confirms the premise of
using an adversarial filter to cleanse the dataset of adversarial
samples within the defined scope. Versions of the Mimicry
attack, as well as AT-MA versions, were detectable with their
respective adversarial filters. We observed that the malware
classifier’s precision dropped by 6% when classifying Adver-
sarial samples employing the Mimicry technique, and by 2%
when classifying samples using the AT-MA technique. While
these figures might not appear low, in the realm of cyberse-
curity, a single unblocked malware instance could potentially
compromise an entire system. Upon examining the results
presented in table VI and VII, we can infer that utilizing
the filter before or after the initial malware classification
model yields equivalent final results. This approach proves
superior to directly testing the primary model with the dataset
containing adversarial and non-adversarial malware.

The training time as a primary model (malware classifier)
as the filter models was below 12 seconds on average, with the
defined scope. If the dataset enlarges in size, maybe another
packing technique would be more viable. Still, in the defined
scope, it is viable to run that model on a personal computer
when we compare the time used to train the models.

When we check the results described in table VII, we
can infer that using the filter before or after the malware
classification model initially has the same final results, and it
is better than only trying to test directly to the primary model
the dataset with adversarial malware and non-adversarial
malware.

VI. CONCLUSION AND FUTURE WORKS

In the realm of adversarial machine learning and malware
detection, employing an adversarial filter in conjunction with
a malware classifier, in the scope of this article, has proven to
yield improved results. By incorporating an adversarial filter
into the detection framework, the precision of the malware
classifier is enhanced.

The addition of an adversarial filter introduces an extra
layer of defense against adversarial attacks designed to ma-
nipulate or deceive the classifier. This filter identifies and
mitigates the impact of adversarial samples within the training
and testing datasets, effectively reducing their influence on
the classification process. Furthermore, the adversarial filter
assists in mitigating the risks associated with false positives or
negatives, which can have grave consequences in the context
of malware detection. By effectively identifying and addres-
sing adversarial samples, the filter minimizes the likelihood of
misclassifying benign applications as malicious or vice versa.
Furthermore, exploring new testing models and comparing
their processing times, as well as the required disk space for
implementation, could yield significant insights. This becomes
especially relevant in embedded computing scenarios where
resource constraints are prevalent.

Integrating the adversarial filter with the malware classifier
leads to several advantages. Firstly, it aids in detecting and
neutralizing the effects of adversarial perturbations that could

potentially mislead the classifier’s decision-making, as we
can see in tables VI and VII. The classifier becomes more
resilient to adversarial manipulation by selectively filtering
out such perturbations, as seen in I. Preview works used
Ensemble Models, which necessarily uses more process and
will probably need more time to train and test the models.
In this work, we saw that the direct connection between the
filter model and the malware classifier model already brings
some gain in the classification precision.

Moreover, the adversarial filter helps mitigate the risks
associated with false positives or false negatives, which can
have severe consequences in the context of malware detection.
By effectively identifying and addressing adversarial samples,
the filter reduces the likelihood of misclassifying benign
applications as malicious or vice versa.

These findings contribute to the ongoing efforts in ad-
versarial machine learning and malware detection, providing
valuable insights for developing more robust and effective
defences against adversarial attacks. By integrating the pro-
tective capabilities of an adversarial filter directly into the
primary classifier, their resilience could be strengthened, ensu-
ring enhanced security in the face of sophisticated adversarial
threats.

Future works can focus on enlarging the attacks that com-
pose the adversarial dataset, principally when we mix attacks
against different platforms, binary structures, etc.

Furthermore, the use of new testing models and the com-
parison between the processing, the time and disk space
needed to implement them could be substantial, principally
in embedded computing where there are low resources.

REFERENCES

[1] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
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