
Inconsistency detection methods for statecharts and
sequence diagrams: a systematic literature review
Matheus Vieira Carmona Cogo1, Carline Degregori Muenchen1, Jeanne Samara dos Santos Lima1, Emilia

Villani1, Christopher Shneider Cerqueira1
1Instituto Tecnológico de Aeronáutica, São José dos Campos/SP - Brasil

Abstract— During model-based systems engineering or soft-
ware engineering activities, diagrams representing use cases
(sequence diagrams) and diagrams representing object behaviors
(state machine diagrams or statecharts) can conflict with each
other in what is called an inconsistency. Detecting these incon-
sistencies is crucial to check if a given specification is realizable
through the behavior that was conceived to meet it. This paper
provides a systematic literature review of inconsistency detec-
tion methods for UML state machine diagrams and sequence
diagrams. The selection process is aided by an open-source
machine-learning tool, and resulted in the qualitative synthesis
of 27 works. The included publications offer methods to tackle
the detection of horizontal-semantic behavior inconsistencies.

Keywords— Systematic literature review, Model consistency,
UML

I. INTRODUCTION

Systems engineering (SE) activities have become increasin-
gly more “model-driven” in the past 20 years [1]. The shift
from document-based engineering to model-based systems
engineering (MBSE) or model-driven engineering (MDE) was
sparked by several reasons, such as ambiguity reduction and
improved traceability, but it was the advent and popularization
of digital tools, methods and languages that promoted and ef-
fectively enabled this transition [1]. UML (Unified Modeling
Language), SysML (Systems Modeling Language) and, more
recently, Arcadia are the most prominent examples of MBSE-
enabling languages.

The mere adoption of MBSE or MDE, however, did not
solve all problems intrinsic to the engineering of intricate and
highly coupled systems. Just as consistency issues can arise
in document-based approaches, SE models may also exhibit
them. Logically, an inconsistency represents a contradiction.
If any two propositions defined in a model are not simultane-
ously true, it is said that the model is not consistent [2]. Model
consistency is then defined as the absence of inconsistencies,
and may be taxonomically branched into several types such
as horizontal or vertical consistency and semantic or syntactic
consistency [3]. A SE model is often composed of several
abstraction facets of a system called viewpoints [4]. These
viewpoints may evolve concurrently and even overlap as
development goes on. As a consequence of poor viewpoint
integration, inconsistencies may surface either in the structure
of a model or in its behavior.

Of particular interest to this paper is the Arcadia MBSE
method [5], implemented in the Capella tool, which extensi-
vely uses both sequence diagrams (SDs) and statecharts (SCs,

Thanks to Fundação Casimiro Montenegro Filho, FCMF, to Financiadora
de Estudos e Projetos, FINEP and to Instituto de Controle do Espaço Aéreo,
ICEA.

originated from [6]) to model the system’s behavior. This
systematic literature review (SLR) provides an overview of
available inconsistency detection methods, and aims to answer
the following research question: which methods are suitable
to be implemented in the Arcadia-Capella environment as a
plugin for the detection of behavior inconsistency between
SDs (representing use cases) and SCs (representing the system
components’ behavior)?

Detecting inconsistencies between SC diagrams and SDs
has the practical effect of checking if a given use case (as
defined by the Arcadia methodology) proposed to fulfill a
certain capability is realizable by the behavioral logic of
that system’s components. If any inconsistencies are found,
the model should have its behavior changed to match the
expected use case or vice-versa. The same applies to forbidden
sequences of events.

In general, an inconsistency may also arise not due to a
semantic divergence, but from a syntactic one. For example,
SCs transitions should contain the same events’ names as
SDs messages’ names. The Capella tool, however, already
eases the detection and handling of these, as the diagrams
are feature-rich and internally linked with their metamodels.
In fact, the tool user may implement validation rules that
navigate through the metamodel to check if a specific element
has all the linkage expected for that type. For those reasons,
this SLR is concerned only with inconsistencies derived from
semantic contradictions.

A previous survey on model consistency [2], carried out
in 2001, has tackled the issue on a broader management
level, including not only the inconsistency detection methods
but its diagnosis, handling and tracking with a focus on
software engineering. An SLR conducted in 2009 presented
inconsistency management methods for UML while explicitly
showing which types of inconsistencies and diagrams were
supported for each method analyzed [7]. An SLR conducted
in 2017 [8] followed a similar strategy, noting the lack of
CASE-integrated or tool-integrated methods for detection and
handling of inconsistencies. In fact, it was found that almost
90% of studies were not tried in industrial settings [8]. Yet
another SLR [9] published in 2017 classifies inconsistency
managing methods by their paradigm and, most noticeably,
by their compliance to some quality features proposed, like
support for all kinds of inconsistencies. This paper differs
slightly from those due to the need of surveying updated,
state-of-the-art methods for a more specific and narrow use
case: the horizontal-semantic behavioral inconsistency detec-
tion between SCs and SDs inside the Capella tool. Naturally,
any method would, in theory, be implementable in the Capella
platform, but it is beneficial to know during the research phase

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

132

which methods require intermediate steps - like translation of
diagrams to a third construct - before development begins. It
also important to know the methods’ limitations, as they could
hinder the usage of the Capella tool. As a last remark, some
of them may also require external tools, which could be an
obstacle when developing an open-source plugin.

The rest of the paper is structured as follows: Section 2 will
provide the reader with the SLR methodology used, such as
the eligibility criteria, search strategy and selection process.
Section 3 presents the SLR results, such as the study selection
and its characteristics. Section 4 contains a discussion and an
interpretation of the results found. Section 5 contains final
remarks in regards to the methods surveyed and to future
works.

II. METHODS

The SLR is guided by the Preferred Reporting Items for
Systematic reviews and Meta-Analyses (PRISMA) 2020 sta-
tement [10]. For the data collection step, the sources used are
Web of Science, Scopus and IEEE Xplore. The search strategy
protocol is presented in Table I. The search string reflects
the need to identify a model inconsistency detection (or
management) method suitable for SCs (or similar behavior-
modeling diagrams, such as petri-nets, state machines or finite
automata) and SDs.

After data collection a data set preparation is required.
By using ASReview Data Tools, an extension of ASReview,
the individual data sets sourced from the aforementioned
databases can be merged into a single RIS file with their
duplicates removed.

ASReview is an open-source machine-learning tool [11]
that enables the quick systematic labeling of papers into two
categories: relevant and irrelevant. The labeling decision is
up to the user, and each input is used to train the model
so that the next entry shown has a higher chance of being
relevant. The screening step can then be prematurely stopped
(compared to a manual screening process) once a stopping
criteria [11] is met. The labeling of entries is done according
to the eligibility criteria from Table II, applying exclusion
rules to titles, abstracts and keywords provided by ASReview.
The stopping criteria chosen was to label at least 33% of
the sample’s total size and hit 50 consecutively irrelevant
publications. Although somewhat arbitrary, this criteria is
considered to be conservative enough and is also being
used in similar SLR publications [12]. During the screening
procedure, whenever the authors disagreed on whether or not
to include a publication, it was included to be further analyzed
in the full-text eligibility assessment step. Similarly, whenever
the search string keywords appeared in an unclear context but
the authors were not confident enough to exclude it using the
E1 criterion from Table II, the publication was included in
the full-text analysis.

The next step is an eligibility assessment where the sample
is refined by reapplying inclusion and exclusion rules on the
full-text analysis of the sample’s content. Lastly, a few more
related works are included in the sample by using the forward
and backward snowball sampling method [13], a technique
consisting of exploring references and citations that match
the inclusion and exclusion criteria.

The most impactful factors that may threaten the SLR
validity are missing studies due to a biased search protocol

TABLE I

SEARCH PROTOCOL

Search parameter

Data sources Web of Science, Scopus, IEEE Xplore

Search string

consisten AND (model* OR diagram*)
AND (statechart* OR
”state machine*”OR petri* OR
automata) AND sequenc*

Search fields Title, abstract, keywords
Period 1995-2023
Languages English
Document type All

TABLE II

ELIGIBILITY CRITERIA

Criterion Description

E1 Out of scope due to
different keyword meaning.

E2 The inconsistency detection method is
not defined in sufficient details to replicate it.

E3 Full-text or abstract not available
at the time or in another language.

E4 The inconsistency detection is referenced
but is not part of the research effort.

E5 The method supports only a translation
or conversion between diagrams.

I1
The method is applied semantically,
horizontally between statecharts (or similar)
and sequence diagrams.

and relevant studies being excluded at the screening process.
The risk of the first factor is considered to be low, as the
search string used is similar to that of previous SLRs [2] [7]
[8] - in fact, in some cases the usage of asterisks as suffixes
and prefixes of keywords cause the initial sample to be even
more inclusive.

The second factor is considered to be of moderate risk due
to two main reasons: there was limited, misleading or con-
fusing phrasing in abstracts; the machine-learning approach
may not have presented all relevant papers before the stopping
criteria was met.

III. RESULTS

In this section the SLR selection process flow diagram is
presented, containing the sample size changes that occurred
in each step. The results are then qualitatively presented. Due
to size limitations, a quantitative analysis will not be included
in this paper.

A. Selection process

Figure 1 contains the selection process flow diagram and
the sample size of each step. During the screening step, from
442 articles initially identified, 118 were excluded based on
Table II. Out of these, 105 were excluded due to E1; 3 were
excluded due to E4; 9 were excluded due to E5; 1 publication
was excluded due to E3. From the remaining 324 publications,
245 were considered not relevant because the stopping criteria
was met. 7 publications were added back to the sample

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

133

after divergences between the authors during application of
exclusion rules. During the eligibility assessment step, out of
86 articles, 62 were excluded after the full-text analysis. Out
of these, 31 were excluded due to E1; 2 were excluded due
to E2; 16 were excluded due to E3; 11 were excluded due
to E4 and 2 due to E5. Finally, during the snowball sampling
step, 3 papers were included into the final sample. These steps
produced a final sample size of 27 relevant papers which were
included in the qualitative synthesis.

Identification through search protocol, sample size
after duplicate removal:

n = 442

Post screening step sample size
n = 86

Records included in the synthesis:
n = 27

 ​ ​ ​Exclusion criteria hits
 ​E1: 105 records
 ​E2: -
 ​E3: 1 record
 ​E4: 3 records
 ​E5: 9 records

Records added back
due to authors

divergence:
n = 7

Excluded due to ASReview
stopping criteria

n = 245

 ​ ​ ​Exclusion criteria hits
 ​E1: 31 records
 ​E2: 2 records
 ​E3: 16 records
 ​E4: 11 records
 ​E5: 2 records

Added from the
snowball method:

n = 3

Fig. 1. Selection process flow diagram

B. Synthesis of methods surveyed

The following paragraphs synthesize the methods’ charac-
teristics, exposing the rationale behind the technique used,
their use cases and gaps identified by the original authors.
In Section IV the applicability of methods will be discussed
based on parameters like easiness of implementation and
UML features supported.

Litvak, B. et al [14]: describes an algorithm to check
consistency based on semantic equivalence of both diagrams
(e.g. lifelines and state machine objects). This algorithm is
implemented as the Behavioral Validator of UML (BVUML)
tool. It supports pseudostates, and is not integrated into a
CASE/MBSE tool.

Lucas, F. et al [7]: employs a transformation language
(IQVT-Maude) that maps the semantics between distinct me-
tamodels and defines rewriting rules. These rewriting rules
can be used to check the semantic consistency of state
machines and SDs, since lifeline messages can, for example,
be expressed as class methods or state machine triggers. Even
though the method is implemented using an EMF metamodel,
a full integration into a CASE/MBSE tool is not realized.

Yokogawa, T. et al[15]: uses the Labelled Transition Sys-
tem Analyser (LTSA) model checker to detect inconsistencies
in state diagrams and SDs that were converted to processes.
Presents no support for hierarchy in SDs and no CASE/MBSE
tool integration.

Phuklang, S. et al [16]: translates state machine dia-
grams and SDs to a process representation described by the
Communicating sequential processes (CSP) language, which
is then fed into a Failures-Divergence Refinement (FDR)
model checker, similarly to the method proposed in [15]. No
mention of features supported. Integrated into a standalone
Java application.

Matsumoto, A. et al [17]: extension of a previous work
[18] similar to [15] that allows for hierarchical structures in
SDs, such as combined fragments (the two types allowed are
alt and loop). The translated CSP from SDs and state machine
diagrams are checked with a FDR model checker.

Yokogawa, T. et al[19]: extension of previous works
[17][15]. The method used is the same as [17], but the types
of combined fragments increased to include the alt, opt, par,
loop, strict and seq operators. Provides a counterexample if an
inconsistency is detected. Not integrated with a CASE/MBSE
tool.

Shinkawa, Y. [20]: translates state machine diagrams and
SDs into Colored Petri-nets (CPN), then verifies the correct-
ness via two sets of formal rules (Method-based and State-
based Consistency). Translation rules exist for all UML state
machine diagram pseudostates and for alt, opt, par, loop,
critical, break and seq SDs fragments. There are no case
studies and the formal rule set is not implemented in an
algorithm or tool.

Shinkawa, Y. [21]: extension of [20]. Proposes three
perspectives on correctness (consistency, completeness and
soundness) and methods to verify them by a mapping to
CPNs. There are no case studies or examples and the formal
rule set that maps diagrams to CPNs is not implemented in
an algorithm or tool.

Tan, H. et al[22]: maps the parallel regions of a state
machine diagram and parallel fragments of SDs to Labeled
Petri-nets, proposing a formal rule set to verify consistency
between the two constructs. No mention of other types of SDs
fragments (other than par) or pseudostates. Not integrated into
a CASE/MBSE tool.

Diethers, K. et al [23]: uses the UPPAAL model checker to
detect inconsistencies. SCs and SDs are loaded into Vooduu,
a plugin implemented in the Poseidon UML tool, which
translates them into UPPAAL behavior and observer automata.

Zhao, X. et al [24]: translates state machine diagrams
into Split Automata, a formalism proposed by the authors
that enables inconsistency detection with the SPIN model
checker and mitigates the state explosion problem associated
with flattened automata. It is implemented into a MagicDraw
plugin. Other features of UML, such as pseudostates or
combined fragments in SDs, are not mentioned.

Wang, H. et al [25]: maps SCs into Finite State Processes
and SDs into a trace of messages, then uses the LTSA tool
to verify the consistency. Does not mention UML features
such as pseudostates or fragments and is not integrated into
a CASE/MBSE tool.

Lam, V. et al [26]: encodes both SDs and SCs diagrams
in the π-calculus process algebra formalism. The Mobility

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

134

Workbench (MWB) tool then checks if the created specifica-
tions are weakly open bisimilar or not. The example provided
contains a SD with an alt fragment, but no composite states
or pseudostates in SCs. Not implemented in a CASE/MBSE
tool.

Gongzheng, L. et al [27]: describes SCs using XYZ/E
then translates that description to Promela. SDs are mapped
to Linear Temporal Logic (LTL) specifications. Both are
then jointly analyzed with the SPIN model checker. Mapping
rules are given for some of the SD fragments (alt, opt, par,
loop, neg) and SCs may have hierarchical states. Provides
no mapping rules for pseudostates and no integration with a
CASE/MBSE tool.

Gherbi, A., Khendek, F. [28]: branches semantic
consistency into three different definitions (Behavioral,
Concurrency-related and Time Consistency) and proposes an
algorithm that generates a schedulability model with SCs and
SDs as input. The proposed implementation does not support
sub-states (hierarchy), pseudostates or combined fragments.
Not integrated to a CASE/MBSE tool.

Hammal, Y. [29]: detects time and semantic inconsis-
tencies by mapping SCs to Petri-nets (using the semantic
formalism of a previous work [30]) and then comparing
its reachability graph to the SD specification model. Not
integrated to a CASE/MBSE tool.

Yao, S., Shatz, S. [31]: proposes the Extended Colored
Petri-Nets (ECPN) to verify if the behavior sequences pro-
duced by the SD ECPN are included in behavior sequences
produced by the SC ECPN. A flattening strategy is also
included to deal with hierarchical SCs, but pseudostates and
guards support are proposed as future work. Not integrated to
a CASE/MBSE tool.

Kawakami, Y. et al [32]: extension of previous work [33].
Models state machine diagrams and SDs as boolean formulae
through the proposed formalism. Checks the consistency
using the symbolic model checker SMV. Does not support
UML SCs features, and supports only a subset of combined
fragment operators. Not integrated to a CASE/MBSE tool.

Kaufmann, P. et al [34]: extension and revision of [35].
Translates the semantics of state machine diagrams and SDs
to propositional formulas that are then fed into a SAT solver.
The implementation was developed with the Eclipse Modeling
Framework (EMF), which is also used to define Capella
metamodels. Not all UML features are included in the for-
malism, though, like hierarchical states, combined fragments
or evaluation of guards. Implemented in a standalone tool.

Xie, Y. et al [36]: definition of LTL specifications from
Collaboration-Contracts, which in turn come from SDs. SCs
are translated into the Promela language to be used in
the SPIN model checker. Some of the UML state machine
diagram features (Initial, Final, Fork/Join and composite
states) have mapping rules to the Promela language. Similarly,
combined fragments from UML SDs are not considered in the
translation to Promela. Not integrated to a CASE/MBSE tool.

Xuandong, L. et al [37]: checks if a scenario mapped
by a Message Sequence Chart (MSC) can (or can not, in
the case of forbidden scenarios) be generated from a Petri-
net run. No explicit support for fragments in the scenario
description. Implemented in a Java tool with partial support
for the Rational Rose tool (importing of UML diagrams).

Xuandong, L. et al [38]: similar to [37], checks con-

sistency between bMSCs (basic MSCs) and Petri-nets with
emphasis on timing consistency, that is, a scenario specifica-
tion has timing constraints that a Timed Petri-net shall fulfill.
The check is done by an algorithm, but a full implementation
of the method is not included. Like [37], there is no explicit
support for fragments.

Choi, J. et al [39]: exposes how state machine diagrams
and SDs can be represented with MARTE (Modeling and
Analysis of Real-Time and Embedded systems) annotations,
and proposes the UMCA (UML/Marte timing Consistency
Analyzer), a tool that can extract timing requirements from
SDs. These requirements are then implemented in the UP-
PAAL and TIMES model checkers. There is no explicit
support for combined fragments. Partial integration with the
Papyrus Modeling environment (importing of diagrams).

Straeten, R. et al [40]: the behavioural inconsistency
detection is presented as part of a formal approach for model
refinement using Description Logics (DLs). SD traces and
Protocol State Machines (PSMs) are then translated into the
SHIQ DL. After translation, it can be checked if a given
message occurs at least once or always occurs. Only supports
a subset of state machine pseudostates, and there is no explicit
support for fragments. Integrated into the Poseidon UML tool.

Haga, S. et al [41]: checks inconsistencies between UML
state machine diagrams and SDs through process algebra. A
set of entities and the interaction transition graph (ITG) is
defined for the Structure-Behavior Coalescence (SBC) process
algebra. Formalisms to translate loops, sequence compositi-
ons, alternative compositions and parallel compositions from
UML diagrams to SBC ITGs are given. According to a
previous work from the same authors [42], SBC-SMDs do not
contain components such as pseudostates due to the higher-
level nature of the algebraic description. There are no explicit
translation rules from these pseudostates to SBC-ITGs, howe-
ver. The method is not integrated into a CASE/MBSE tool.

Knapp, A., Mossakowski, T. [43]: uses the Institution
formalism to check if interactions such as between SCs and
SDs are realizable. In their example, a state machine is
constructed as a composite structure and this structure is, in
turn, converted to a set of traces. If these set intersect with
the SD traces, it is said the interaction is realizable and thus
the diagrams are horizontally consistent. Not integrated into
a CASE/MBSE tool.

Mithun, M., Jayaraman, S. [44]: uses SCs as “design-
time” models and SDs as “run-time” test cases to check the
consistency of Java programs, with a similar algorithm to
[14]. The algorithm relies on the Java Interactive Visualiza-
tion Environment (JIVE) to generate the run-time traces of
applications.

IV. DISCUSSION

A great deal of work has been put into detecting se-
mantical inconsistencies between SCs and SDs. Most of the
included publications have employed formal approaches in
their methods, and a majority of those have used model
checkers. These methods can check the static consistency [8]
of diagrams, which means the behavior can be proved to be
consistent without executing it. The main advantage of these
methods is that the exhaustive search of a specific trace (e.g. a
SD) in a generator of traces (e.g. an SC) also leads to assertive

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

135

temporal specifications. It would be beneficial, for example,
to know if a forbidden use case is ever allowed to happen
in a given component modeled in an SC without manually
testing all possible behaviors, or if a small interaction between
two components can happen in all generated traces. This
assertiveness, however, comes at a cost: the mapping of UML
constructs to a formal language adequate for model checkers is
complex. For this reason, most studies consider only a subset
of SD features or a subset of SC features. These subsets
may not be adequate to represent Capella/Arcadia models
without loss of expressiveness. And even if expressiveness
is not lost, a seamless experience is not feasible if the user is
prohibited from using all diagram features, like pseudostates
and combined fragments. The mapping procedure itself is also
cumbersome and computationally expensive due to the state
explosion problem.

In contrast to static consistency, some methods check the
dynamic or symbolic consistency [8]. A dynamic consistency
check implies detecting inconsistencies between diagrams
during the simulation or execution of the behavior. The benefit
of this approach is that the generated trace (e.g. runtime output
from an SC) can be compared to the specification trace (e.g.
use case), provided there is semantic equivalence between
the metamodels. The downside is that, without performing an
exhaustive search, an event-firing strategy needs to be devised
- like the random walk method proposed in [45] that randomly
fires transitions until a fault detection is verified. Another
strategy commonly used [14][7][44] is to fire SD messages
as events in the execution of the state machines. Lastly, a
user could also select which triggers to send to a simulation
at a given timestamp. The generated trace from this execution
could then be compared to predefined traces that shall or shall
not be included in the desired behavior.

V. FINAL REMARKS

For future works, it is necessary to study the feasibility
of employing model checkers along with fully-featured UML
diagrams, i.e., including all pseudostates, composite states and
combined fragments. As long as the formal language transla-
tion is hidden from the end user, exhaustive search processes
could significantly aid the detection of inconsistencies.

Alternatively, a dynamic consistency method can also be
implemented if SD traces could be generated from SCs mo-
deled in Capella, and then compared to use cases previously
modeled. This is part of an ongoing work to develop a plugin
that brings execution capabilities for Capella statecharts.

REFERENCES

[1] C. Haskins, “A historical perspective of mbse with a view to the future,”
vol. 1, 2011.

[2] G. SPANOUDAKIS and A. ZISMAN, “Inconsistency management in
software engineering: Survey and open research issues,” pp. 329–380,
12 2001.

[3] M. Usman, A. Nadeem, T. hoon Kim, and E. suk Cho, “A survey of
consistency checking techniques for uml models.” IEEE, 12 2008, pp.
57–62.

[4] I. J. S. . Software and systems engineering, [ISO/IEC/IEEE
42010:2011] Systems and software engineering — Architecture des-
cription, 1st ed., ser. International Standard. ISO; IEC; IEEE, 2011,
vol. ISO/IEC/IEEE 42010:2011.

[5] J.-L. Voirin, Model-based system and architecture engineering with the
arcadia method. London, Kidlington, Oxford: ISTE Press ; Elsevier,
2018, oCLC: 1013462528.

[6] D. Harel, “Statecharts: a visual formalism for complex systems,”
Science of Computer Programming, vol. 8, pp. 231–274, 6 1987.

[7] F. J. Lucas, F. Molina, and A. Toval, “A systematic review of uml
model consistency management,” Information and Software Technology,
vol. 51, pp. 1631–1645, 12 2009.

[8] F. ul Muram, H. Tran, and U. Zdun, “Systematic review of software
behavioral model consistency checking,” ACM Computing Surveys,
vol. 50, pp. 1–39, 3 2018.

[9] D. Allaki, M. Dahchour, and A. En-nouaary, “Managing inconsistencies
in uml models: A systematic literature review,” Journal of Software,
vol. 12, pp. 454–471, 6 2017.

[10] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann,
C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan,
R. Chou, J. Glanville, J. M. Grimshaw, A. Hróbjartsson, M. M. Lalu,
T. Li, E. W. Loder, E. Mayo-Wilson, S. McDonald, L. A. McGuinness,
L. A. Stewart, J. Thomas, A. C. Tricco, V. A. Welch, P. Whiting,
and D. Moher, “The prisma 2020 statement: An updated guideline for
reporting systematic reviews,” 3 2021.

[11] R. van de Schoot, J. de Bruin, R. Schram, P. Zahedi, J. de Boer,
F. Weijdema, B. Kramer, M. Huijts, M. Hoogerwerf, G. Ferdinands,
A. Harkema, J. Willemsen, Y. Ma, Q. Fang, S. Hindriks, L. Tummers,
and D. L. Oberski, “An open source machine learning framework for
efficient and transparent systematic reviews,” Nature Machine Intelli-
gence, vol. 3, pp. 125–133, 2 2021.

[12] F. van Ommen, P. Coenen, A. Malekzadeh, A. G. E. M. de Boer, M. A.
Greidanus, and S. F. A. Duijts, “Interventions for work participation of
unemployed or work-disabled cancer survivors: a systematic review,”
Acta Oncologica, pp. 1–12, 4 2023.

[13] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering.” ACM, 5 2014, pp. 1–10.

[14] B. Litvak, S. Tyszberowicz, and A. Yehudai, “Behavioral consistency
validation of uml diagrams.” IEEE, 2003, pp. 118–125.

[15] T. Yokogawa, S. Amasaki, K. Okazaki, Y. Sato, K. Arimoto, and
H. Miyazaki, “Consistency verification of uml diagrams based on
process bisimulation.” IEEE, 12 2013, pp. 126–127.

[16] S. Phuklang, T. Yokogawa, P. Leelaprute, and K. Arimoto, “Tool support
for consistency verification of uml diagrams,” pp. 606–609, 2017.

[17] A. Matsumoto, T. Yokogawa, S. Amasaki, H. Aman, and K. Arimoto,
“Consistency verification of uml sequence diagrams modeling wireless
sensor networks.” IEEE, 7 2019, pp. 458–461.

[18] H. MIYAZAKI, T. YOKOGAWA, S. AMASAKI, K. ASADA, and
Y. SATO, “Synthesis and refinement check of sequence diagrams,”
IEICE Transactions on Information and Systems, vol. E95.D, pp. 2193–
2201, 2012.

[19] T. Yokogawa, A. Matsumoto, S. Amasaki, H. Aman, and K. Arimoto,
“Synthesis and consistency verification of uml sequence diagrams with
hierarchical structure,” Information Engineering Express, vol. 6, p. 529,
2020.

[20] Y. Shinkawa, “Inter-model consistency between uml state machine and
sequence models.” vol. 2. SciTePress - Science and and Technology
Publications, 01 2011, pp. 135–142.

[21] ——, “Evaluating behavioral correctness of a set of uml models,”
in International Conference on Software Paradigm Trends, vol. 2.
SCITEPRESS, 2012, pp. 247–254.

[22] H. Tan, S. Yao, and J. Xu, “Behavioral consistency analysis of the uml
parallel structures,” pp. 287–292, 2011.

[23] K. Diethers and M. Huhn, “Vooduu: Verification of object-oriented
designs using uppaal,” pp. 139–143, 2004.

[24] X. Zhao, Q. Long, and Z. Qiu, “Model checking dynamic uml consis-
tency,” pp. 440–459, 2006.

[25] H. Wang, T. Feng, J. Zhang, and K. Zhang, “Consistency check between
behaviour models.” IEEE, pp. 470–473.

[26] V. S. W. Lam and J. Padget, “Consistency checking of sequence
diagrams and statechart diagrams using the π-calculus,” pp. 347–365,
2005.

[27] L. Gongzheng and Z. Guangquan, “An approach to check the consis-
tency between the uml 2.0 dynamic diagrams.” IEEE, 8 2010, pp.
1913–1917.

[28] A. Gherbi and F. Khendek, “Consistency of uml/spt models,” pp. 203–
224.

[29] Y. Hammal, “A formal methodology for semantics and time consistency
checking of uml dynamic diagrams,” pp. 78–85, 2009.

[30] ——, “A formal semantics of uml statecharts by means of timed petri
nets,” pp. 38–52, 2005.

[31] S. Yao and S. Shatz, “Consistency checking of uml dynamic models
based on petri net techniques.” IEEE, 11 2006, pp. 289–297.

[32] Y. Kawakami, T. Yokogawa, H. Miyazaki, S. Amasaki, Y. Sato, and
M. Hayase, “Symbolic model checking of interactions in sequence
diagrams with combined fragments by smv,” vol, vol. 4, pp. 1692–1695,
2010.

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

136

[33] S. HARADA, T. YOKOGAWA, H. MIYAZAKI, S. Yoichiro, and
M. HAYASE, “A tool support for verifying consistency between uml
diagrams by smv,” in ITC-CSCC: International Technical Conference
on Circuits Systems, Computers and Communications, 2009, pp. 897–
900.

[34] P. Kaufmann, M. Kronegger, A. Pfandler, M. Seidl, and M. Widl,
“Intra- and interdiagram consistency checking of behavioral multiview
models,” Computer Languages, Systems and Structures, vol. 44, pp.
72–88, 12 2015.

[35] ——, “A sat-based debugging tool for state machines and sequence
diagrams,” pp. 21–40, 2014.

[36] Y. Xie, D. Du, J. Liu, and Z. Ding, “Towards the verification of services
collaboration.” IEEE, 2009, pp. 428–433.

[37] X. Li, J. Hu, L. Bu, J. Zhao, and G. Zheng, “Consistency checking
of concurrent models for scenario-based specifications,” pp. 298–312,
2005.

[38] L. Xuandong, W. Linzhang, Q. Xiaokang, L. Bin, Y. Jiesong, Z. Jianhua,
and Z. Guoliang, “Runtime verification of java programs for scenario-
based specifications,” pp. 94–105, 2006.

[39] J. Choi, E. Jee, and D.-H. Bae, “Timing consistency checking for
uml/marte behavioral models,” Software Quality Journal, vol. 24, pp.
835–876, 9 2016.

[40] R. V. D. Straeten, V. Jonckers, and T. Mens, “A formal approach
to model refactoring and model refinement,” Software and Systems
Modeling, vol. 6, pp. 139–162, 6 2007.

[41] S. W. Haga, W.-M. Ma, and W. S. Chao, “Inconsistency checking of
uml sequence diagrams and state machines using the structure-behavior
coalescence method.” IEEE, 10 2022, pp. 1–6.

[42] ——, “Formalizing uml 2.0 state machines using a structure-behavior
coalescence method.” IEEE, 10 2022, pp. 174–179.

[43] A. Knapp and T. Mossakowski, “Uml interactions meet state machines-
an institutional approach,” in 7th Conference on Algebra and Coalgebra
in Computer Science (CALCO 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[44] M. Mithun and S. Jayaraman, “Comparison of sequence diagram from
execution against design-time state specification.” IEEE, 9 2017, pp.
1387–1392.

[45] C. Schwarzl and B. Peischl, “Static- and dynamic consistency analysis
of uml state chart models,” pp. 151–165, 2010.

ISSN: 1983 7402 ITA, 26 a 28 SET 2023

137

