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Resumo— This work addresses resource allocation optimiza-
tion in data centers, formulated as a variation of the bin packing
problem. Due to the high costs of on-premises infrastructures,
strategies for migrating workloads to the public cloud and
shutting down physical and virtual machines are investigated
to enhance operational cost efficiency. Preliminary experiments
demonstrate the effectiveness of the proposed algorithm at
different scales, highlighting its performance and limitations in
complex scenarios. Execution time metrics and the number of
simulations indicate that the algorithm is efficient for small
to medium-sized tasks but faces challenges under extensive
demands.
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I. INTRODUCTION AND MOTIVATION

Optimization problems in computational theory benefit
from robust mathematical frameworks and methodologies.
Significant contributions by researchers such as Papadimitriou
and Steiglitz have been important in advancing solutions
to such challenges [1]. The need for solving combinatorial
optimization problems often stems from practical applications
requiring efficient resource allocation, such as logistics, sche-
duling, network design, and production planning. Effective
resource allocation in these fields is essential for achieving
desired outcomes, reducing costs, and maximizing efficiency.

This research aims to apply existing knowledge in combi-
natorial optimization to a specific resource allocation problem.
The problem is formulated as a variation of the bin packing
problem, inspired by works such as “Bin Packing Approxi-
mation Algorithms: Survey and Classification”by Coffman et
al. [2].

The consolidation of emerging technologies such as cloud
computing [3]–[5] introduces novel challenges like distributed
computing, load balancing and real-time processing of large
data sets [6]–[11]. Economically, cloud data centers present
a more cost-effective option compared to on-premises data
centers, which can be large and expensive to maintain [12]–
[14].

The migration of on-premises workloads to the cloud can be
approached from two perspectives. The first focuses on costs:
how can we deactivate machines in on-premises data centers
in parallel with the migration process? Deactivating machines
can reduce costs. The second addresses to critical systems that
cannot go offline. In this case, workloads can be redistributed
across different machines, allowing older machines to be
decommissioned and the data center infrastructure to be
modernized. This must occur in parallel with the migration
of the workload to another infrastructure, whether temporary
or permanent. This research aims to contribute to the field of
resource allocation in combinatorial settings by providing a

framework to address challenges related to decommissioning
in large data centers.

A. The Problem

This section begins by defining the problem through a
characterization of a large-scale data center. This includes
fundamental components and simplified constraints governing
the system, along with considerations of workload migration
[15]–[21]. The system consists of a data center with machines
(servers) and a workload representing processes that demand
capacity from these machines.

Fig. 1. Datacenter workload groupings.

Processes are grouped based on the services provided,
leading to constraints from business units as illustrated in Fig
1. These processes align with virtual or physical machines.
The core of the system is the architectural framework of ma-
chines. Each machine has specific RAM and CPU capacities,
serving as the computational backbone for the workload’s
resource demands. This hierarchical arrangement and resource
allocation are shown in Fig 2.

Fig. 2. Datacenter machines grouping.

A physical machine encapsulates the total available capacity
(RAM and CPU). For efficiency, security, or redundancy, it
can be divided into n virtual machines. The sum of capacities
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across the virtual machines must not exceed the physical
machine’s total capacity.

Next, consider migrating workloads from on-premises in-
frastructure to a public cloud. At defined intervals, specific
processes transition from on-premises infrastructure to the
cloud, as illustrated in Fig 3. During this process, workloads
coexist in both infrastructures, effectively duplicating their
presence.

Fig. 3. Workload migration to public cloud from on-premises data center.

The coexistence of processes in both on-premises infras-
tructure and the public cloud introduces duplicated costs,
impacting overall expenses. While parallel existence facilitates
migration, the primary objective is to mitigate this dynamic.
Implementing a strategy to promptly remove processes from
the on-premises data center after successful migration is
crucial. This approach allows for a gradual reduction in ove-
rall workload, creating opportunities to redistribute processes
across machines.

The core problem is efficient resource utilization within
the data center, especially given the ongoing migration of IT
infrastructure workloads from on-premises to the public cloud.
While the literature has explored ways to balance workloads
across different IT infrastructures for several years [22]–
[27], there has been less focus on strategies that intentionally
create imbalances to deactivate idle machines during a parallel
migration process.

The goal is to deactivate the maximum number of machi-
nes by efficiently redistributing processes to machines with
available capacity, enabling the deactivation of underutili-
zed machines. This involves developing resource allocation
strategies that ensure effective reorganization, aligning with
optimization goals by reducing the data center’s capacity and
associated costs. Decreasing the number of machines in the
on-premises environment during this independent migration
process can significantly reduce costs.

II. BACKGROUND

In the classical scenario, a list of real numbers within the
range (0, 1] is given. The task is to accommodate these
numbers in the fewest bins possible, ensuring that the sum
of the numbers within each bin does not exceed 1. This
problem holds practical significance and finds applications in
schedule optimization, route planning, and resource allocation
problem-solving. The exploration focuses on the core of this
problem, progressively extending the approach to include
various generalizations [28]. The bin packing problem is
recognized as an NP-hard problem [29], implying that finding
an optimal solution becomes computationally infeasible as
the problem size increases. In NP-hard problems, there is
no known algorithm to solve them efficiently, and their
complexity grows rapidly with larger instances. The survey

conducted by Christensen [28] provides a historical overview
of the key developments in the theory of the bin packing
problem, organizing their research according to chronological
milestones. Bin packing is acknowledged as a specific variant
of the one-dimensional cutting problem [30], the loading
problem [31], and several scheduling-related issues [32].

The early stages of this field received significant contribu-
tions from other scientists, including Ullman [33]. His work
addressed memory allocation problems, such as table format-
ting and file allocation. Ullman recognized the complexity
of finding a general placement algorithm that minimized the
number of required bins. Instead, he presented an analysis of
two heuristics: FirstFit (FF) and BestFit (BF). Shortly thereaf-
ter, Garey and Ullman [34] explored the analysis, considering
four heuristics: FirstFit, BestFit, FirstFitDecreasing (FFD),
and BestFitDecreasing (BFD). Johnson [35] explored other
algorithms and analytical techniques to tackle the challenges
of the bin packing problem. Subsequently, himself [36] pro-
duced a work that provided a definitive analysis of worst-
case guarantees for various approximation algorithms in the
context of the bin packing problem.

A. Related Works
In a recent paper by Salem [37], the author conducted a

survey on the Covering and Packing Problem, denoted as
C and P using their initial letters. In this survey, the author
compiled a table that consolidated different works spanning
all over the years. Table 2.1 presents a summary of important
C and P references. The category of “Cutting and Packing
(C and P) problems” encompasses a duo of challenges that
share a common foundational structure. These two challenges,
despite their distinct names, stem from this common structure.
The nomenclature variation arises from the differing applica-
tion scenarios. Specifically, the “cutting problem” pertains to
situations where one or more significant objects necessitate
division into a collection of smaller components. In contrast,
the “packing problem” relates to scenarios where the objective
is to assemble multiple small items into one or more larger
objects. Due to the structural similarity, the problems will
be collectively referred to as “C and P” without further
distinction [37].

Fig. 4. References on Cutting and Packing Problems [37]
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As elucidated by [37], the resolution of these problems
carries significant importance, extending beyond a scientific
challenge due to its inherent complexity. It also holds subs-
tantial economic significance by contributing to the reduction
of a primary cost factor in numerous production sectors. The
raw materials are the target of these production sectors and
can constitute a substantial portion, sometimes up to 40%, of
the overall production expenses.

These considerations are applicable to the data center
scenario because maintaining this type of structure is mone-
tarily expensive, involving costs for maintenance, usage, and
machine substitutions. It is important to note that there is an
economic risk in the problem described above. If the goal is to
decommission a data center, but the process is not executed
properly, it could lead to a scenario where a company has
to bear the costs of two infrastructures simultaneously - one
on-premises and the other in the public cloud.

III. MODEL’S CHARACTERISTICS

We now introduce the set of all items, denoted as I . Each of
these items in set I is unique and has certain characteristics
described by a pair of values, denoted as (d1i, d2i). In our
application, these two positive integers represent its RAM and
CPU demands, as shown in 1.

∀i ∈ I : ∃d1i, d2i ∈ Z+ : i = (d1i, d2i) (1)

Items will be classified into three distinct groups: il, ib, and
ic, with each group comprising items that adhere to similar
characteristics (not necessarily related only to RAM and CPU
demands).

The concept of item groupings is defined as any subset
Sn ⊆ I , where there exists an unordered list of elements
(i1, i2, . . . , in) such that Sn = {i1, i2, . . . , in}.

∀Sn ⊆ I, ∃i1, i2, . . . , in ∈ I : Sn = {i1, i2, . . . , in} (2)

In task management, each task has two key requirements:
CPU processing power and RAM. Tasks can be grouped into
three categories: those requiring more CPU (“CPU tasks”),
more RAM (“RAM tasks”), or both (“CPU+RAM tasks”).
These groupings help organize tasks with similar CPU or
RAM needs.

In the “Vector Bin Packing”problem, CPU and RAM re-
quirements correspond to the dimensions of vectors that must
be allocated to bins, ensuring the capacity constraints of each
bin are respected.

The grouping described earlier is an intermediate classi-
fication. A data center provides computational resources to
support applications and digital products, managed financially
as part of the business. In this scenario, business units fund
the acquisition, maintenance, and use of machines in the
data center. For governance and security, task groups (CPU
tasks, RAM tasks, CPU+RAM tasks) cannot be allocated to
machines belonging to other business units. To address this,
we define another grouping that links business units to their
respective task sets. Let SCn ⊆ P (I), where P (I) is the
power set of I . For each SCn ⊆ P (I), there is an unordered
list (S1, S2, . . . , Sm) of subsets of I , where:

∀SCn ⊆ P (I), ∃S1, S2, . . . , Sn ⊆ I : SCn = S1∪S2∪· · ·∪Sn

(3)
As an example, consider the sets:

S3 = {i13, i2, i9}, S7 = {i5, i87} (4)

where:

i13 = (10, 4), i2 = (4, 8), i9 = (20, 2) (5)

and
i5 = (2, 2), i87 = (2, 1) (6)

Now, consider the grouping SC1:

SC1 = {S3, S7} = {(10, 4), (4, 8), (20, 2)} ∪ {(2, 2), (2, 1)}
(7)

SC1 = {(10, 4), (4, 8), (20, 2), (2, 2), (2, 1)} (8)

The corresponding d1 and d2 values can be summed to
calculate the resources required by the final grouping SC1:

RSC1
= (10+4+20+2+2, 4+8+2+2+1) = (38, 17) (9)

The notation R(SCn) represents the resource demand of a
grouping.

The problem revolves around packing a set of items into a
collection of bins. To achieve this, an understanding of what
these bins represent is initially required. In this context, a
bin is defined as a pair of positive integer values, denoted as
m = (c1, c2). Thus the bins m in the set B of all bins:

∀m ∈ B, ∃c1i, c2i ∈ Z+ : m = (c1i, c2i) (10)

In the allocation process, groups of bins may be relevant.
Therefore, we define a bin grouping Lm as a subset of bins:

∀Lm ⊆ B, ∃m1,m2, . . . ,mn ∈ B : Lm = {m1,m2, . . . ,mn}
(11)

Thus, a bin grouping can be represented by an unordered
list of individual bins (m1,m2, . . . ,mn). Lm, as a subset,
shares similarities with SCn groups. The sum of c1 and
c2 values in any unordered list within Lm allows for the
assessment of required resources, denoted by R(Lm). The
distinction is that Sn requires capacity from Lm.

A. Model’s Interaction

The model distinguishes between different classes of items,
denoted as il, ic, and ib, each subject to specific allocation
and reallocation conditions. Items and bins are categorized
based on data center management criteria. Critical processes
(ib) pose an allocation challenge due to their complexity
and the risk of disrupting business operations. The num-
ber of dependencies between items and bins measures the
complexity of the allocation process. Critical processes (ib)
have more dependencies, making their allocation difficult. In
contrast, processes with fewer dependencies (il) allow for
simpler allocations. Suppressed demands (ic) wait in a queue
until sufficient capacity is available, after which they can be
allocated.
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Items of classes il and ic can be allocated to bins in set Bl,
with their allocation status adjustable in subsequent iterations.
Items of class ib are bound to bins in set Bb and cannot be
reallocated.

Let Bl be the set of bins for items of classes il and ic.
Let Bb be the set of bins for items of class ib.
In any application, it is necessary to define the constraints

for allocating and reallocating items to bins.
Items in Sn can belong to any class of I , meaning they can

be part of Sn if i ∈ il, ib, or i ∈ ic. The allocation rules use the
concept of item groupings, represented by Sn, which contains
items from classes il, ic, and ib. Allocation is constrained by
the classifications of item and bin groupings. Items can only
be allocated to bins if their classifications match, ensuring
compatibility.

Constraints are enforced by allocation functions f : SCn →
Lm, where SCn is an item grouping with classification
cSCn

and Lm is a bin grouping with classification cLm
. The

function f is defined as:

f(SCn) = Lm if and only if cSCn
= cLm

(12)

B. Constraints

Managing bin capacities is essential in bin packing. We
introduce the Bin Capacity Constraints, which govern the
allocation of items based on two key attributes: d1i and d2i.

∑
i⊆SCn

d1i ≤
∑

m∈Lm

c1m (13)

This ensures that the total d1 of items in Sn doesn’t exceed
bin capacity c1 in Lm.

∑
i⊆SCn

d2i ≤
∑

m∈Lm

c2m (14)

This mirrors the above constraint but applies to the second
attribute d2.

Denoted CBcm ∈ [0, 1], reserves a portion of bin capacity
for class ic.

∑
i⊆SCn

d1i ≤ (1− CBcm) · c1m (15)

Ensures the first attribute sum for class ic items stays within
reserved capacity limits.

∑
i⊆SCn

d2i ≤ (1− CBcm) · c2m (16)

Similar to last constraint, but for the second attribute.
Reallocation depends on item and bin classes. Items from

il or ic can be reallocated within Bl, while items from ib in
Bb cannot be reallocated. Machine capacity reservation (1%-
5%) for class ic and resilience (10%-20%) is enforced before
the allocation process.

C. Metrics and Allocation Strategy

Let A be a binary matrix representing the allocation status
of items within bins. The entries Aij are defined as:

Aij =

{
1, if item i is allocated to bin j

0, otherwise

This binary encoding encapsulates the allocation decisions,
ensuring each item i is exclusively allocated to one bin,
adhering to:

∀i ∈ I,
∑
j∈B

Aij = 1 (17)

where B represents the set of all bins. This constraint
ensures the integrity of the allocation process.

Considering the bins as column vectors in A, we partition
A as:

A = [a1, a2, . . . , am] (18)

where each aj denotes a column vector representing a bin. The
L1-norm of a column, ∥aj∥1, measures the bin occupation in
terms of the number of items:

∥aj∥1 =

s∑
i=1

|aij | (19)

The allocation strategy involves identifying and removing
empty bins from A. The algorithm then targets the column
with the minimum sum, reallocating items associated with
that bin.

IV. ALGORITHM

This section will present a pseudo-code algorithm spe-
cifically designed to address the item allocation problem,
which is the focus of this work. The algorithm serves as a
computational tool applied to real-world scenarios related to
bin packing in the context of data center decommissioning.

The provided code introduces a heuristic allocation ap-
proach applied to the bin packing problem. This algorithm
incorporates elements of the quicksort algorithm. QuickSort
[38], [39] is a widely used sorting algorithm known for
its efficiency and speed in sorting elements in a list or
array. Furthermore, the proposed heuristics integrates concepts
from the first-fit decreasing strategy [29], [33], [36], heuristic
method commonly used in bin packing scenarios.

In this context, first-fit decreasing involves sorting items in
descending order based on size and sequentially allocating
them to the first bin with sufficient space. This strategic
combination increases the algorithm’s ability to allocate items
within the constraints of the packing problem.

At the core of this algorithm lies the sorting of the bins and
items in lists, a common strategy employed in bin packing
for efficiently allocating items into bins. By leveraging these
combined techniques, the algorithm makes more informed
and effective decisions during the allocation process. The
pseudocode provided further illustrates these concepts.
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Algorithm 1 Item Allocation Pseudocode
Input: List of items i and list of bins m
Output: Allocated bins and items

1 Sort both lists i and m in descending order based on their
capacities

2 while the maximum number of items is not allocated to the
bins do

3 for each item in i do
4 for each bin in m do
5 if the CPU and RAM capacities of bin in m are

greater than or equal to item’s demand then
6 Start allocation

7 else
8 Proceed to the next bin

9 Generate two new lists for the items Result: items fitted: A
list of items that are allocated to the bins

Result: items notfitted: A list of items that could not be
allocated to any bin

10 Generate two new lists for the bins Result: bins fitted: A list
of bins that are fully filled after the allocation

Result: bins notfitted: A list of bins that still have remaining
capacity after the allocation

11 for each bin in bins fitted do
12 Calculate the remaining capacity information for each bin

by subtracting the demand of each item from items fitted
13 Create the matrix A based on the list of items in items fitted

and the bins in bins fitted
14 Calculate the L1-norm (norm one) of the columns of matrix

A
15 Remove columns with zero norm and choose which bins

(i.e., which columns in A) will have items removed and/or
reallocated

16 for each item in list i do
17 Some items will be removed, which may exist in both

items fitted and items notfitted
18 Repeat from step 3
19 Stopping condition: If the norm is equal to 0 or there is no

possibility of further allocation of items into bins, break the
loop

When data is grouped and the approach described in
Algorithm 1 is executed, it is possible to automate the resource
allocation process in a data center environment. This process
provides timely and accessible information to meet decision-
making needs in specific situations, covering cases of small,
medium, and large volumes of data.

A. Algorithm Complexity Analysis

Assessing the algorithm’s performance is crucial when
considering its utility in practical applications. Algorithm 1
integrates two heuristics with distinct computational comple-
xities during execution: sorting items and bins, and allocating
items in bins using first fit decreasing.

1) Sorting Complexity: In its initial phase, the algorithm
necessitates sorting the lists of items and bins. This sorting
operation is executed through the sort − values method
from the pandas library in Python. Pandas is a powerful
data manipulation library that provides data structures like

DataFrames, and the sort− values method efficiently imple-
ments sorting algorithms, such as quicksort or mergesort.
Mergesort is a stable, comparison-based sorting algorithm
known for its consistent performance and reliable results.

The expected time complexity of quicksort for n elements is
O(nlogn). Considering the number of items and bins denoted
as n and m respectively for complexity considerations, the
sorting complexities can be expressed as follows: sorting of
items O(nlogn) and sorting of bins: O(mlogm).

2) First-Fit Decreasing Complexity: At its core, the al-
gorithm iterates over each item in the list (a total of n
iterations). For each item, the algorithm iterates over bins that
satisfy the constraint, leading to a maximum of m iterations.
Consequently, the overall iteration complexity is expressed as
O(n×m).

Calculating the overall complexity involves summing up
these components:

Total Complexity = Sorting of Items + Sorting of Bins +
Iteration Complexity.

Total Complexity = O(nlogn) +O(mlogm) +O(n×m).
The actual runtime of the algorithm depends on the relative

sizes of n and m. If both are large and comparable, the
dominant factor will be the iteration complexity O(n × m).
However, in scenarios where one is significantly smaller
than the other, the dominant factor may vary. Assessing the
algorithm’s real-world performance requires considering these
complexities in the context of specific input data.

V. CONCLUSION

The experiments are conducted using various items and
bins, each characterized by their RAM and CPU demands.
The algorithm implementation was on Python, the system
used features an x86-64 architecture, 8 CPU cores, with an
Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, and 16GB of
memory (RAM). The experiments assess the efficiency of
different allocation algorithms in terms of resource usage
and allocation accuracy. The results highlight the strengths
and limitations of our approach, providing insights for future
improvements.

Experiment Parameters First Iteration
1 20 Bins, 100 Items 0.14s (Worst Norm: 10)
2 200 Bins, 1,000 Items 2.7s (Worst Norm: 12)
3 2,000 Bins, 10,000 Items 147s (Worst Norm: 7)
4 20,000 Bins, 100,000 Items 14113s (Worst Norm: 16)

TABELA I

PERFORMANCE METRICS (PART 1).

Last Iteration Worst Average Time Number of Simulations
0.008s (Best Norm: 1) 0.12s 100

0.1s (Best Norm: 1) 2.83s 100
4.7s (Best Norm: 1) 248 30
388s (Best Norm: 1) 13452s 8

TABELA II

PERFORMANCE METRICS (PART 2).

The algorithms struggle to perform well on large datasets,
as evidenced by the number of parameters used in Experiment
4. In practice, this could be a problem in a data-center with
dynamic workloads, where long processing times for resource
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allocation and migration are unacceptable. Another challenge
arises when integrating data centers and cloud infrastructures.

The algorithm’s ability to make calculated suggestions for
resource allocation and process migration was evidenced.
However, the time taken to perform calculations and to
migrate processes to their new machines is significant. This
is where cost becomes a central factor. If the process reloca-
tion and workload migration do not meet the organization’s
dynamic requirements, the organization could be stuck with
two expensive infrastructures: the cloud and on-premises data-
center.

In conclusion, this study advances research on decommis-
sioning data centers during cloud migrations and dynamic
workloads. Future work should explore practical solutions,
test various heuristics, and include monetary factors for a
comprehensive economic analysis. Adding dynamic elements
like real-time workload adjustments can enhance model adap-
tability. As multi-cloud strategies become more common,
future research should address decommissioning challenges
across multiple public clouds and consider new constraints to
optimize resource allocation.
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