
AIN’T - An Artificial Intelligent Network
Thermometer for Measurements of Link Saturation

on TCP/IP Flows
Marcelo R. Silva1 and Cesar Marcondes2

1Aeronautics Institute of Technology (ITA), São José dos Campos/SP - Brasil
2Aeronautics Institute of Technology (ITA), São José dos Campos/SP - Brasil

Abstract— The transmission capacity of data links is crucial
for network administrators. This measure is particularly signi-
ficant in operational environments where maintaining commu-
nication continuity is vital. However, the principal strategy of
the most widely used tools or protocols for this purpose consists
of inserting extra packets into the network and throttling its
transmission capacity. Such an active strategy has the potential,
even momentarily, to produce packet losses in combat support
applications (SAD, for example) and crash communications on
the network under analysis. Seeking to avoid network overload
while measuring its saturation, this work proposes AIN’T (Ar-
tificial Intelligent Network Thermometer). AIN’T measures the
level of congestion on the data link passively without inserting
any data packets into the respective infrastructure. To this end,
it applies MLP, LSTM, and CNN Deep Learning Networks. The
results show that the models extracted from these neural network
architectures can distinguish between high and low-level link
saturation in an IP data network with over 99% precision.

Keywords— Passive network monitoring, Deep Learning,
Transmission Control Protocol (TCP).

I. INTRODUCTION

The broad expansion of the Internet and the services avai-
lable on it intensifies the good performance of IP communica-
tion networks as an imperative. This fact can be demonstrated,
for example, by the expansion of network monitoring tools.
In these scenarios, bandwidth monitoring tools (BMT) play
a key role. BMT helps network administrators identify and
eliminate bottlenecks that lead to low speeds, ensuring the
right bandwidth to carry out an organization’s business.

The available throughput, directly related to bandwidth,
is one of the soundest metrics for managing a network.
Unfortunately, most tools used for this purpose collect this in-
formation by introducing extra data into the network, seeking
its transmission limit, which can cause connections to fail in
overload scenarios. This type of approach, therefore, should
not be adopted during critical transactions and prohibits
infrastructure monitoring during operation when control of
the status of the links is crucial.

A. Motivation

In armed conflicts, network performance has high impor-
tance and complexity. Communication failures can compro-
mise the best-planned operations. The communication conti-
nuity obligation becomes even more challenging considering
link heterogeneity and routes between the various echelons.

M. Silva, marcelo.silva.101270@ga.ita.br; C. Marcondes,
cesar.marcondes@gp.ita.br.

The tactical level generally employs links that allow move-
ment in large zones but with narrow bandwidth, extremely
susceptible to outages. Thus, on the battlefield, the ideal would
be network monitoring with no overloading.

The MTO [1] is an emblematic expression of the comple-
xity of network monitoring on the battlefield. In this system,
sudden variations in the link characteristics are expected
regarding available bandwidth (thousands of bytes to hundreds
of bits), RTT (hundreds to thousands of of microseconds), and
error rate (high in HF). Such a scenario, composed of narrow-
band technologies, requires a passive network monitor at each
link, promoting a better use of each transmission medium.

To enable link monitoring without compromising its ope-
ration, this work proposes the AIN’T (Artificial Intelligent
Network Thermometer) tool. AIN’T assesses the saturation
level of an end-to-end link passively without introducing new
packets into the network. To achieve this, AIN’T applies
artificial intelligence models that, once trained, can distinguish
with high accuracy (above 99%) between moments of high
and low link saturation.

B. Research Questions

This work, motivated by the issues presented so far, ad-
dresses the following research questions:

• RQ1: Binary link saturation classification, using Deep
Learning Networks: Would it be possible to train a
neural network so that it is capable of accurately mapping
the saturation level of a data link as high or low from
the establishment of a cut line?

• RQ2: Tolerance to variation in the number of flows:
Would the models be capable of accurately classifying
the saturation level of the network, even when there is
variation in the number of flows established in it?

• RQ3: Efficiency of low-dimensional models: Would
models receiving low-dimensional vectors (2 or 3) as
inputs be capable of passively distinguishing degrees of
link saturation above and below a given threshold?

II. RELATED WORK

One of the most common tools for measuring the available
bandwidth on a link is iPerf. Its version 3 [2] allows users
to adjust several parameters according to the measurement
interest. However, iPerf is an active measurement tool and
uses packet insertion in the network to obtain its capacity. In
addition, this depends on the active transport protocol in the
TCP stack.

Another traditional tool for throughput measurement is
nuttcp [3]. Recently, this tool has produced data for training
neural networks aimed at throughput prediction in cellular
networks [4]. However, similar to iPerf, nuttcp also uses an
active approach for its measurements, which restricts its use
during critical network operation states.

Another rapidly expanding tool for network monitoring
is the perfSONAR [5]. This tool is currently present on
all continents, including partners such as RNP. Its general
objective is to peruse end-to-end paths to improve the user
experience. Nevertheless, perfSONAR uses active tests [6],
which can potentially overload the network infrastructure, as
mentioned above.

Current proposals, such as [7] and [8], employ artificial
intelligence to boost the physical layer efficiency. These works
raise models from machine learning to obtain a more efficient
mechanism for link adaptation in terms of modulation and
bandwidth. The advantages of this type of approach, however,
would depend on adaptations at the electronic circuit level,
which makes its scalability difficult.

Deep learning networks demonstrate a profound synergy
with problems related to link congestion. Works such as
[9], [10], and [11] attest that MLP, LSTM, and CNN deep
networks can classify and control congestion in a TCP/IP
network. Although closely related, congestion control alone
does not provide end users with a view of the degree of
saturation of a given link, as proposed by this work.

This paper presents AIN’T, a tool that indicates the satu-
ration link degree without probe packets or IP infrastructure
adaptation. As will be seen in the course of this work, AIN’T
will only need access to the ACK packets that arrive at a given
client, too simple in the considered context.

To provide the degree of overload of a link, AIN’T uses
low-dimensional inputs (2, 3) Deep Learning Networks, inclu-
ding LSTM and CNN. A High-performance language imple-
ments these neural networks, responding within the RTT time
scale, which, to the best of our knowledge, is unprecedented
in the literature.

III. BACKGROUND

Understanding where losses occur in a TCP/IP network
is essential to know how it works. Considering a minimally
designed network in terms of available bandwidth and link
reliability, losses during packet transmission occur in routers
when the number of packets exceeds the capacity of their
input or output buffers [12]. Therefore, this work proposes
to determine the degree of link saturation by observing the
percentage of buffer occupancy.

The router drop premise is the construction foundation
of the models extracted from Neural Networks to construct
AIN’T. Section V-B designs a Supervised Learning where the
Neural Network receives data sets associated with degrees of
buffer occupancy above and below a certain level to adjust
the respective synaptic weights.

A. Multilayer Perceptrons
In mathematical terms, a perceptron is a function that

associates each element of Rn with a Real value given by

F (x,w) = φ(

n∑
j=1

wijxj + bi), (1)

where x = (x1, x2, ..., xn) ∈Rn, w = (wi1, wi2, ..., win) ∈
Rn, φ is called activation function and bi ∈R. The circles in
Figure 1 give a general view of the perceptron system.

A perceptron layer consists of a set of perceptrons that share
the same sequence of inputs over time. MLPs are layers of
perceptrons organized in such a way that the outputs of one
layer serve as inputs to the next (Figure 1). The first stimulus
layer is called the input layer, and the final one is called the
output layer. The others are hidden layers.

Although the composition of the perceptron layers is sim-
ple, it is very powerful. According to the universal approxi-
mation theorem [13], an MLP with only one hidden layer is
capable of arbitrarily approximating any continuous function
from Rn to R on the hypercube [0, 1]n. That is why it
serves as the basis for the neural architectures presented in
the following.

Fig. 1: The figure represents a 4-layer MLP, with two hidden
layers and the respective input and output layers. The con-
nection vectors arriving at the circles represent the inputs of
the function F (x,w) (Equation 1). Reprinted from [14]

B. Long Short Term Memory (LSTM) Networks

LSTM networks [15] are a special case of Recurrent Neural
Networks (RNN). The inputs over time (x1, x2), the hidden
state (h1, h2), and the cell state (c1, c2) (Figure 2) are
mathematically processed to prevent gradient vanishing. The
LSTM design efficiently doses the influence of more remote
inputs on the final output of the network.

Fig. 2: Simplified LSTM example. This figure highlights the
chaining components of this architecture: The hidden state (h1

and h2) and the cell state (c1 and c2). The treatment given
to these outputs makes LSTMs suitable for predictions that
depend on information with expressive gaps between them.

C. Convolutional Neural Networks (CNN)

A Convolutional Neural Network [16] is a Deep Neural
Network that has a sequence of filters whose responses feds
interconnected perceptron layers. The filters perform con-
volutional and pooling operations, intentionally highlighting

only remarkable features and reducing the dimension of
inputs [17]. Figure 3 illustrates the operation of the CNN
network adopted by this work, which decreases 3x3 dimension
inputs to two-component vectors before activating a set of
perceptrons.

Fig. 3: CNN example. The figure highlights the convolution
and pooling operations, which provide small-scale inputs to
perceptron layers.

IV. METHODOLOGY

This paper adapts the five-stage methodology from [9],
here composed of four stages: Data Mining, Data Processing,
Model Training and Evaluation, and AIN’T Build. Each step
feeds its following logical chain, culminating in a passive
bandwidth monitor with higher precision integrated with the
network. Figure 4 illustrates that.

Fig. 4: The methodology applied by the research. Each phase
supports the next until the chain culminates with AIN’T,
classifying the degree of network saturation. Adapted from
[9]

We used the ns3 [18] Traffic Analyzer (TA) 1 proposed
by [9] to build training, validation, test, and generalization
datasets. This work varies the TA parameters and performs
several new simulations of a dumbbell topology (Figure 5)
with a fixed number of stations (60 clients and 60 servers) and
bottleneck rate (100 Mbps). All channels have a 2ms delay.
Except for the bottleneck, the transmission rate is 1Gbps on
all channels. The TA sets Router 01 queue to 300 packets of
1500 bytes and all MSS sockets to 1420 bytes.

Fig. 5: The topology for getting training, validation, and
testing data. This picture also illustrates TA work, raising the
metrics to train neural network models. Adapted from [9]

The logic of the connections established in the dumbbell
network is as follows:

1The TA code is available at https://github.com/reisdout/
ns3-MTO-CC/blob/main/NS3-MTO-CC.cc

• Applications are on terminals connected to Router 01,
and TCP servers are on those connected to Router 02.

• IP address assignment varies by penultimate byte; Router
01 10.0.0.2 terminal connects to the 10.1.0.2 terminal of
Router 02; likewise, the 10.0.1.2 terminal with 10.1.1.2;
then 10.0.2.2 station with 10.1.2.2, until the last connec-
tion, between stations 10.0.59.2 and 10.1.59.2.

V. DATA MINING AND PROCESSING

A. Data Mining

The data mining described below is inspired by [9], with
some relevant adaptations. Through the dumbbell topology,
TA establishes distributed TCP connections and generates two
csv files per flow; the first file records the same parameters
proposed by [9] for every ACK received by the sender:

• #seq: Sequence number, present in ACK packet.
• ack ewma: Weighted exponential moving average of

arrival time between ACK.
• snd ewma: Weighted exponential moving average of the

interval between timestamps present in ACK.
• rtt ratio: It is obtained by dividing observed RTT by

the minimum (RTTmin) during the current experiment.
Unlike [9], however, to update the second csv file, whe-

never a segment is sent in time t, TA associates sequence
numbers with the occupation percentage of the edge router
buffer (buf lvl) to which the transmitters are connected
(Router 01 in Figure 5) at t and with the saturation level
(sat lvl), which, now assumes 1 if buf lvl <= 70% or
2, case buf lvl >= 80%. Therefore, this work reduces the
originally proposed fuzzy area by 66%.

B. Data Processing

The data generated by the TA goes through the same stages
introduced by [9] before forming the input vectors for the
neural networks:

1) Inner Join (IJ): The first step consists of generating
a table that associates the ack ewma, snd ewma,
and rtt ratio measurements, with buf lvl and sat lvl,
through the #seq columns, present in both .cvs files
collected by the TA.

2) Redundancy Elimination (RE): RE discards lines with
identical ack ewma, snd ewma, and rtt ratio, kee-
ping the last record throughout the simulation.

3) Label Balancing (LB): LB assures that the quantity of
records with sat lvl = 1 is the same as those with
sat lvl = 2, discarding excess data.

4) Attenuators Cut (AC): Records with ack ewma and
snd ewma above the ninetieth percentile (P90) are ig-
nored. Furthermore, records that presented the rtt ratio
above 4× the average RTT value were also considered
attenuators and, therefore, removed.

5) Input Normalization (IN): normalization divides each
column by its maximum value.

The resulting table associates vectors with components
ack ewma, snd ewma, and rtt ratio, properly treated, with
class 0 or 1, according to the value of sat lvl. Note that
the proposal is robust against leaks inherent to predictive
models[19], since the tool extracts input data from the ACK
packets.

https://github.com/reisdout/ns3-MTO-CC/blob/main/NS3-MTO-CC.cc
https://github.com/reisdout/ns3-MTO-CC/blob/main/NS3-MTO-CC.cc

VI. MODELS TRAINING AND EVALUATION

A. Overview

The TA obtains training data for 1.5 minutes by emulating
connections among 60 Vegas TCP P2P whose flows provide
the corresponding files for Data Mining and Data Processing
steps. After Data Processing, we take a 20000-entries sample
to train the models. The final transformation process introdu-
ced by [9] provides NAA inputs (Figure 9).

Fig. 6: MLP Vectors
Fig. 7: LSTM Vectors Fig. 8: CNN Vectors

Fig. 9: Table elements regrouped to satisfy the specific format
of each NNA. Reprinted from [9]

As in [9], we evaluate twelve models, varying the NNA
among MLP, LSTM, and CNN, associated with one com-
bination of components (ack ewma, snd ewma, rtt ratio),
following the same model labeling logic. MLP123 re-
fers to the MLP network, fed by the three components.
LSTM13 means LSTM neural network, receiving bidimensi-
onal (ack ewma, rtt ratio) vectors; same for CNN23 (CNN
receives (snd ewma, rtt ratio)).

B. Model Training - Obtaining the Models

This paper maintains training parameters and AI libraries
proposed by [9] (Table I). The process reserves 20% of 20000
table entries for testing and the remaining 80% for training
and validation.

TABLE I: The Neural Network configurations with their training
parameters. Adapted from [9]

Model Spec

MLP Input: 3 dimensional vectors. Layers: 3 (20 RELU). Out-
put: Sigmoid.

LSTM Input: Matrix 3x3. Layers: 2 (each one with 3 LSTM - 30%
dropout). Output: Sigmoid.

CNN
Input: Image Vectors 3x3@1. Convolution:16 maps - 1x2.
Stride: [1,1]. Convolution Output: RELU. Pooling: maxpo-
oling, [1,2]. Flattening: 64 RELU inputs. Output: Sigmoid.

epoch: 3000; batch size 64; learning rate 0.0001; 20% for testing

Again, Accuracy, Error, Precision, Recall, and F1, obtained
from the Receiver operating characteristics (ROC) analysis 2,
will be used to compare the models extracted from learning
networks. The Table II and the ROC space present in figures
10 summarize the results of this methodology phase3.

C. Analysis of Model Classification Results - Model Evalua-
tion

Regarding the test data results, both ROC space (Figure
10) and Table II indices indicate the good performance of

2http://mlwiki.org/index.php/ROC_Analysis#ROC_
Space

3The research data and notebooks, with the confusion matrices for
each model, are available at https://drive.google.com/file/d/
1OmzeiLwbyu120ifUBOCUQN1zJ9gzWjDn/view?usp=sharing.

TABLE II: Test metrics over test data. The indexes reveal that
most models have accuracy above 95%.

Model Accuracy Error Precision Recall F1
MLP123 0.988 0.012 0.992 0.985 0.988
MLP13 0.980 0.020 0.983 0.976 0.979
MLP23 0.985 0.015 0.991 0.979 0.985
MLP12 0.857 0.143 0.917 0.819 0.865

LSTM123 0.995 0.005 0.993 0.979 0.986
LSTM13 0.994 0.006 0.991 0.980 0.985
LSTM23 0.995 0.005 0.991 0.982 0.986
LSTM12 0.950 0.050 0.901 0.847 0.873
CNN123 0.989 0.011 0.995 0.951 0.972
CNN13 0.982 0.018 0.992 0.919 0.954
CNN23 0.980 0.020 0.985 0.914 0.948
CNN12 0.948 0.052 0.903 0.837 0.869

Fig. 10: ROC space for test data. The concentration of points
around the point (0,1) (TPR = 1 and FPR = 0) reveals high
rates of true positives and a low number of false positives for
all models.

the LSTM123, closely followed by LSTM23. In the table,
LSTM123 and LSTM23 architectures are the best in 4 of
5 presented metrics4. In ROC space, their points stand out,
considering the distance to the lines TPR = 1 and FPR
= 0. Also noteworthy are the MLP models, whose points
are very close to line TPR = 1. With Accuracy close to
99.5%, LSTM13; MLP123, with the highest Recall and F1
and CNN123 (with the highest Precision) are very promising.
Therefore, the best classifiers are those originating from the
LSTM123 and LSTM23 models. These models will input the
next phase of the methodology, the AIN’T construction, as
described in the following section.

VII. AIN’T CONSTRUCTION

The AIN’T construction adapts the proposal presented by
[9]. The Keras2c library [20] generates the best models
(LSTM123 and LSTM23) C implementation from Keras. Fol-
lowing the observer design pattern [21], each Keras2c output
code implements one C++ concrete class. AIN’T activates
these classes according to configuration parameters.

During the simulations, TA measures the ACK arrival
interval and the elapsed time between transmission and RTT.

4Model selection prioritizes Accuracy. Models that highlight this metric
automatically have another one, the Error.

http://mlwiki.org/index.php/ROC_Analysis#ROC_Space
http://mlwiki.org/index.php/ROC_Analysis#ROC_Space
https://drive.google.com/file/d/1OmzeiLwbyu120ifUBOCUQN1zJ9gzWjDn/view?usp=sharing.
https://drive.google.com/file/d/1OmzeiLwbyu120ifUBOCUQN1zJ9gzWjDn/view?usp=sharing.

Fig. 11: AIN’T design. This figure shows how to integrate
AIN’T into a TCP network to monitor a network, highlighting
the main components and their respective integration.

TA passes these values to the AIN’T tool, which calculates
the corresponding model’s input. AIN’T tool indicates the
bandwidth saturation with C++ model implementation out-
puts. Figure 11 illustrates that.

The proposed architecture provides a precise AIN’T update
interval projection. The TA calculates the time measurements
each time an ACK packet arrives at the transmitter. Thus, in an
RTT time scale, TA starts AIN’T (figure 11) that updates the
link saturation level. That means that the AIN’T monitoring
is practically online. The following section shows AIN’T in
action.

VIII. NETWORK MONITORING VIA AIN’T

The experiment setup implemented the above-mentioned
design to verify the AIN’T classification capacity. To this end,
the TA performed a 10-minute simulation on the aforementi-
oned dumbbell network (Figure 5) as follows:

• During simulation, for each ACK received by the client
with IP 10.0.0.2, the TA delivers the time measurements
to AIN’T.

• If AIN’T provided three identical responses, the TA
records the respective response and the real buffer oc-
cupancy percentage. That allows for comparing the effi-
ciency of AIN’T in classifying bottleneck saturation.

• From 9 min onwards, except for the first client, the
others closed their flows gradually, every 1 second. This
approach aims to test the behavior of AIN’T facing
different numbers of flows and transitions between low
and high buffer occupancy.

AIN’T tool passed this test twice, activating the LSTM123

and LSTM23 models, respectively, as they stood out during
the model evaluation phase. The Graphs of figures 12 and 13
show the results.

IX. AIN’T PERFORMANCE ANALYSIS

The presentation of the graphs in the figures 12 and 13
provides a quick assessment of the AIN’T tool’s performance.
The horizontal green dotted line highlights the training th-
reshold (80%). If the queue occupancy percentage is below
this line, the AIN’T should respond with level 1; otherwise,
it should signal a value of 2. The overview of both graphs
shows how efficient AIN’T was throughout the experiments.

Both versions of AIN’T, with LSTM123 and LSTM23, show
a sticky response profile within the training proposal:

• Practically, for the entire time that the router buffer
is below 80%, the line corresponding to the AIN’T
response remains in 1, as well as in 2 otherwise.

• Another interesting aspect is the rapid transition in the
models’ outputs at any relief in the router buffer. From
ACK 1600 on, the AIN’T tool follows any pulse of the

blue line below 80%, starting to respond with a level 1
occupancy a few ACKs later.

• From ACK 4050 onwards, a definitive reduction of the
router buffer begins. The AIN’T quickly notices this
change and immediately starts to follow it after a short
period of instability.

• This efficiency in the transition of the AIN’T responses
is also demonstrated in the opposite direction when
the buffer breaks the 80% limit. The graph shows this
between the points of ACK 1500 and 1600.

Although very similar, the LSTM123 and LSTM23 models
present notable differences, mainly in the buffer transition
areas. The AIN’T version implementing the LSTM123 class
demonstrates greater efficiency in these points, going through
shorter periods of instability with fewer transitions between
levels 1 and 2. That can be verified by observing:

• The first transition (ACK 1450 to ACK 1500 in graph 1,
and ACK 1550 to ACK 1600 in graph 2).

• At the buffer drawdown peaks throughout the entire
period of high buffer predominance, between ACK 1500
to ACK 3900 in graph 1, and ACK1600 to 4050 in graph
2

• During the final transition to buffer below 80 in both
graphs.

Thus, the experiments show a slight advantage when AIN’T
operates the model extracted from the LSTM123 architecture
over the one provided by LSTM23.

X. CONCLUSION

The presented technique provides efficient models for de-
tecting high or low link saturation. All AI models accurately
classify the network bottleneck condition, with an accuracy of
over 99% (LSTM123, LSTM13, LSTM23) in highly complex
scenarios (120 stations establishing 60 TCP flows). Therefore,
the results presented by the models on the test data attest that
Deep Learning models are capable of classifying the degree
of link saturation (RQ1).

AIN’T, equipped with the models that presented the best
performance, was tested in a new environment, different
from the training setup, varying the number of flows in the
network topology. During these long-term tests, the classifi-
cation provided by AIN’T remained adherent to the different
levels of buffer occupancy presented, promptly indicating their
variations. So, the built models have a sufficient degree of
generalization to support variations in the number of flows
(RQ2).

The tests, in an unprecedented initiative, show the efficiency
of Deep Learning Networks for activities related to passive
link monitoring. It is worth noting that neural networks with
low-dimensional inputs and few layers presented high values
in all indices on the test data. During the AIN’T evaluation,
the most accurate classifiers tracked link saturation, proving
that Deep Learning models with low-dimensional input are
capable of passively distinguishing the degree of saturation
of a link from a certain threshold (RQ3).

However, some questions remain open for future work.
Numerous other factors can affect the time measurements
obtained as model input (jitter, burst losses, link unavailability,
etc.). Another relevant issue is the investigation of training
stopping criteria, different from the number of epochs. That

Fig. 12: The graph shows the AIN’T responses, operating the model extracted from the LSTM123, and the buffer occupancy
percentage, recorded simultaneously. The profile produced by the AIN’T responses, except for transition moments, remains
low when the buffer is below 80% and high otherwise.

Fig. 13: This graph is analogous to the one in figure 12, but with AIN’T operating the LSTM23 mode. The model, during
the experiment, indicates the buffer occupancy level except for transition moments.

opens space for new research to verify how the models behave
under the influence of these factors.

This work represents the first phase of the research. The
following steps will apply the approach outlined to real
networks for explicit comparison with solutions proposed in
the literature, thereby positioning the proposal among other
available bandwidth measurement tools. Many of the resour-
ces available in the simulation environment are not present
in concrete-component nets, which poses new challenges to
AIN’T scalability.

REFERENCES

[1] M. Hinago and F. P. Piurcosky, “A capacitação no projeto SISFRON:
as lições aprendidas do projeto piloto e as perspectivas para o
prosseguimento das próximas fases.” pp. 285–320, Dec. 2021. [Online].
Available: https://ojs.ufgd.edu.br/index.php/moncoes/article/view/14387

[2] “iperf3 - a tool for active measurements of the maximum achievable
bandwidth on ip networks.” [Online]. Available: https://iperf.fr/

[3] “nuttcp - network performance measurement tool.” [Online]. Available:
https://www.nuttcp.net

[4] O. Basit, P. Dinh, I. Khan, Z. J. Kong, Y. C. Hu, D. Koutsonikolas,
M. Lee, and C. Liu, “On the predictability of fine-grained cellular
network throughput using machine learning models,” in 2024 IEEE
21st International Conference on Mobile Ad-Hoc and Smart Systems
(MASS), 2024, pp. 47–56.

[5] “perfsonar - performance service-oriented network monitoring
architecture.” [Online]. Available: https://www.perfsonar.net/index.html

[6] A. Mazloum, A. AlSabeh, E. Kfoury, and J. Crichigno, “perfsonar:
Enhancing data collection through adaptive sampling,” in NOMS 2024-
2024 IEEE Network Operations and Management Symposium, 2024,
pp. 1–6.

[7] S. Aggarwal, U. S. Sardesai, V. Sinha, D. D. Mohan, M. Ghoshal, and
D. Koutsonikolas, “Libra: learning-based link adaptation leveraging
phy layer information in 60 ghz wlans,” in Proceedings of the 16th
International Conference on Emerging Networking EXperiments and
Technologies, ser. CoNEXT ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 245–260. [Online]. Available:
https://doi.org/10.1145/3386367.3431319

[8] J. Hall, J. M. Jornet, N. Thawdar, T. Melodia, and F. Restuccia, “Deep
learning at the physical layer for adaptive terahertz communications,”
IEEE Transactions on Terahertz Science and Technology, vol. 13, no. 2,
pp. 102–112, 2023.

[9] C. A. C. Marcondes and M. R. d. Siva, “Redes de Aprendizado
Profundo para Classificação e Controle de Congestionamento em Redes
TCP/IP,” in Simpósio Brasileiro de Redes de Computadores e Sistemas
Distribuı́dos (SBRC), 2024, pp. 57–70.

[10] R. Kazama, H. Abe, and C. Lee, “Evaluating TCP throughput predicta-
bility from packet traces using recurrent neural network,” in 2022 IEEE
Symposium on Computers and Communications (ISCC), 2022, pp. 1–6,
ISSN: 2642-7389.

[11] L. Bai, H. Abe, and C. Lee, “RNN-based Approach to TCP
throughput prediction,” in 2020 Eighth International Symposium
on Computing and Networking Workshops (CANDARW). Naha,
Japan: IEEE, Nov. 2020, pp. 391–395. [Online]. Available: https:
//ieeexplore.ieee.org/document/9355940/

[12] J. F. Kurose and K. W. Ross, Computer Networking: A Top-down
Approach, 8th ed. Pearson.

[13] N. Cotter, “The Stone-Weierstrass theorem and its application to neural
networks,” IEEE Transactions on Neural Networks, vol. 1, no. 4, pp.
290–295, Dec. 1990, conference Name: IEEE Transactions on Neural
Networks.

[14] M. A. Nielsen, “Neural Networks and Deep Learning,”
2015, publisher: Determination Press. [Online]. Available: http:
//neuralnetworksanddeeplearning.com

[15] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[16] X. Zhao, L. Wang, Y. Zhang, X. Han, M. Deveci, and M. Parmar, “A
review of convolutional neural networks in computer vision,” Artificial
Intelligence Review, vol. 57, no. 4, p. 99, Mar. 2024. [Online].
Available: https://doi.org/10.1007/s10462-024-10721-6

[17] L. E. Falqueto, R. L. Paes, and A. Passaro, “KNN e Rede Neural
Convolucional para o Reconhecimento de Plataformas de Petróleo em
Imagens SAR do Sentinel-1,” Spectrum - The Journal of Operational
Applications in Defense Areas, vol. 24, no. 1, pp. 29–33, Sep. 2023.
[Online]. Available: https://spectrum.ita.br/index.php/spectrum/article/
view/395

[18] “ns3 - a discrete-event network simulator for internet systems.”
[19] A. Apicella, F. Isgrò, and R. Prevete, “Don’t push the button!

Exploring data leakage risks in machine learning and transfer
learning,” Artificial Intelligence Review, vol. 58, no. 11, p. 339, Aug.
2025, 0000118-Data leakage in machine learning. [Online]. Available:
https://doi.org/10.1007/s10462-025-11326-3

[20] R. Conlin, K. Erickson, J. Abbate, and E. Kolemen, “Keras2c: A
library for converting Keras neural networks to real-time compatible C,”
Engineering Applications of Artificial Intelligence, vol. 100, p. 104182,
Apr. 2021.

[21] D. Nesteruk, Design Patterns in Modern C++: Reusable Approaches
for Object-Oriented Software Design, 1st ed. New York: Apress, Jan.
2018.

https://ojs.ufgd.edu.br/index.php/moncoes/article/view/14387
https://iperf.fr/
https://www.nuttcp.net
https://www.perfsonar.net/index.html
https://doi.org/10.1145/3386367.3431319
https://ieeexplore.ieee.org/document/9355940/
https://ieeexplore.ieee.org/document/9355940/
http://neuralnetworksanddeeplearning.com
http://neuralnetworksanddeeplearning.com
https://doi.org/10.1007/s10462-024-10721-6
https://spectrum.ita.br/index.php/spectrum/article/view/395
https://spectrum.ita.br/index.php/spectrum/article/view/395
https://doi.org/10.1007/s10462-025-11326-3

	Introduction
	Motivation
	Research Questions

	Related Work
	Background
	Multilayer Perceptrons
	Long Short Term Memory (LSTM) Networks
	Convolutional Neural Networks (CNN)

	Methodology
	Data Mining and Processing
	Data Mining
	Data Processing

	Models Training and Evaluation
	Overview
	Model Training - Obtaining the Models
	Analysis of Model Classification Results - Model Evaluation

	AIN'T Construction
	Network monitoring via AIN'T
	AIN'T Performance Analysis
	Conclusion
	References

