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Abstract— This work investigates a dual-antenna passive syn-
thetic aperture Direction-of-Arrival (DoA) estimation technique
for compact airborne sensors under simulated uncertainties in
platform navigation and receiver synchronization. An electro-
magnetic environment incorporating spherical wave propagation
and Doppler effects is implemented in an in-house radar simula-
tor. We analyze how practical issues such as velocity variations,
misleading sampling rates, and local-oscillator frequency offsets
can degrade the accuracy of the proposed DoA estimator,
highlighting trade-offs between aperture length, snapshot budget,
and tolerance to measurement noise. Our results indicate that
the proposed signal model for dual-antenna passive synthetic
aperture is capable of dealing with even moderate misleading
measurements and still arriving at useful azimuth and elevation
estimates.
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I. INTRODUCTION

High-resolution DoA estimation is a key enabler for appli-
cations such as surveillance, navigation, and electronic warfare
[1]. However, classical array-based solutions may impose
large hardware footprints with multiple frontend channels [2],
making them unsuitable for small platforms such as drones or
lightweight aircraft. Passive synthetic aperture methods lever-
age platform motion to emulate a large array using minimal
hardware [3]. Such strategies are well-suited for UAVs, where
researchers have investigated techniques of SAR for angular
estimation [4]. Nevertheless, single-antenna implementations
are typically restricted to azimuth-only estimation and are
prone to ambiguities over wide Field-of-View (FoV). By
introducing a second receive element, spaced by A/2, one
can enable two-dimensional angle estimation with a marginal
increase in size, weight, and power (SWaP). Such compact
configurations remain relatively scarce in the literature, espe-
cially under realistic Doppler and spherical-wave effects, as
well as potential navigation and synchronization errors.

In our earlier work we developed this line of research
in two stages. First, we introduced a single-antenna passive
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synthetic-aperture scheme and showed that platform motion
alone can provide accurate DoA estimates in azimuth, pro-
vided a sufficiently long virtual aperture and a favourable
Signal-to-Noise Ratio (SNR) regime [5]. Building on those re-
sults, our contribution extended the concept to a dual-antenna
configuration, demonstrating that a second element spaced
by A/2 enables joint azimuth—elevation estimation while re-
taining a low-SWaP footprint, under the assumptions of per-
fect trajectory knowledge and negligible local-oscillator (LO)
misalignment [6]. In practical airborne deployments, however,
positional inaccuracies, velocity fluctuations and residual LO
frequency offsets are unavoidable and can severely degrade
performance if left unmodelled. This paper therefore quan-
tifies the impact of those real-world uncertainties within the
dual-antenna passive synthetic-aperture framework.

II. SENSING SCENARIO

To evaluate the proposed dual-antenna synthetic-aperture
system, we consider a representative airborne sensing sce-
nario generated with the Advanced Radar Simulator (ARS).
The receiver is equipped with rwo antennas, spaced by \/2,
arranged in a vertical Uniform Linear Array (ULA), remain
oriented toward the radio source. The platform flies eastwards
at a constant speed of v = 200 m/s and generates a wide virtual
aperture in the azimuth direction and provides an instantaneous
interferometric baseline in elevation. The emitter is localized
by performing DoA estimation at successive positions along
the same flight heading. We consider a 200 km Line-of-
Sight (LoS) link at near-zero elevation. A summary of the
key geometry, platform, and waveform parameters is given in
Table I and the virtual arrays and snapshot combinations used
in this work with the synthetic aperture (in millimeters) for
each pair (K, Q) are shown in Table IL

TABLE I: Scenario parameters.

Geometry & Operating \ Transmit & Signal

Par. Val. | Par. Val.

LoS [km] 200 fe [GHz] 26

Sens. alt. [m] 0 PW [ns] 10 000

El [°] 0 PRP [kHz] 10

Vel. [m/s] 200 Antenna pattern ~ Omni

Fs [MHz] 200 Doppler Yes

Ant. pat. Omni Freq. off. mod. No
|fdlmax [kHz]  ~ 17.35 | Prop. mod. Spherical
Radar alt. [m] 0 Sig. type Rect. pulse




TABLE II: Synthetic-aperture length for (Q, K) pairs.

Q 2 10 20 50 100 500 500 1000

K 1000 200 100 40 20 4 2 2
Synthetic

aperture (mm)  0.001  0.009 0.019 0.049 0.099 0.499 0499 0.999

IITI. SIGNAL MODEL

Under the far-field assumption, the signal is assumed to
reach the center of the ULA (at position p,,) in discrete time
intervals of (n — 1)T}, where Ty is the sampling duration and
n =1,2,3,... . We consider a synthetic aperture along the
z-axis with a size of () consecutive samples. The unit vector

uT = [sin(@) cos(p) sin(@)sin(p) cos(0) ] = [uz Uy Uz ]7 (D)

oriented perpendicular to the incident planar wavefront, in-
dicates the DoA relative to the antenna coordinate system’s
center, which moves with the platform for each snapshot
k=1,...,K, as shown in Fig. 1. In this synthetic aperture
setup with two physical antenna elements, the azimuth angle
, which is part of the DoA, is measured from the z-axis
toward the y-axis, intersecting the projection of u onto the
zy-plane. The elevation angle 6 is measured from the z-axis
toward u.

We assume the two antennas are separated by a distance
0 = A/2, placing them at fixed z-coordinates of z = £+ /2.
While these antennas are fixed in the vertical dimension, the
array (or platform) traverses discrete sampling points along the
z-axis with an inter-sampling distance of A = v, T, where v,,
is the velocity of the platform. The antenna positions in each
of the K consecutive blocks, each with its own coordinate
system, are denoted by a single expression:

T
di s = [(% _ z) A 0 g(—1)i+1} . ie{1,2).
2
Here, the index [ denotes the local sample number within
a specific block k, where [ ranges from 1 to (). This local
index is derived from the absolute sample index n using the
relation I = n — Q(k — 1). The index 4, in turn, distinguishes
between the two antennas. This format concisely represents
the common z-coordinate and the opposing z-coordinates for
each antenna pair.
Thus, the time
ke dikiy diki,-

delay at
is given by
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where c is the speed of light.
Let s(t) € C be a signal impinging on the ULA from u.

Emitter

Fig. 1: Synthetic aperture for ) samples and K snapshots.

The complex baseband signal at d; j,; is
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where ng[l] is additive complex white Gaussian noise with
CN(0,02). Assuming the signal s(t) is narrowband, for Q
consecutive time instances, the difference between consecutive
delays can be approximated as

Tik,(142) — Tik,(141) = Tik,(143) — Tik,(142) ~ - - - )

~ Tik,Q — Tik,Q—1-

Furthermore, we assume that for () consecutive samples,
also the complex envelope si((I — 1)Ts) = sg[l], for I =
1,2,...,@Q can be approximated as

sk[1] ~ si[2] ~ s3] = -+ - & 5, [Q]. (6)

Thus, we can write

e*jQ‘ﬂ'chl,k,L
xplll = silll | = jonforae

] + [l (7

Finally, we can rearrange the phase term of the received sig-
nal as a left centro-hermitian steering vector a(ip, 0, f., v,, Ts)
for each snapshot k and write the received signal in vector
notation. In the expression below, we use s;[Q)], the envelope
of the last sample within each block, as the representative



value for the stationary signal envelope.
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Assuming that the angles of arrival ¢ and 6 are constant for
K snapshots we can write a signal model in matrix form
collecting K snapshots

Y = a(p,0, fo,v,,T5)8" + N € C*XE (9)

where
Y = [y[1] y[2] .. y[K]], (10)
N = [a[1] a[2] ... a[K]], (11
5= [3[1],3[2],..., 3[K]]". (12)
.21 .
Multiplying s,[Q] by e =7 A (k=1 QA& sin(0) cos(?) jyp1ements

a global phase shift applied to each snapshot k that com-
pensates for the platform displacement. Hence, the center of
the synthetic aperture coordinate system for each snapshot &
always coincides with the center of the first snapshot (k = 1).

IV. DOA ESTIMATION

In this work, we apply the Maximum Likelihood Estimator
(MLE) to estimate the DoA, which for a single impinging
wavefront is equivalent to the so-called conventional beam-
former applied to DoA estimation [7]. The spatial covariance
matrix Ry, can be estimated from the 2¢) x K data matrix
Y as 1

Ry, = ?YYH € C2ex2Q, (13)
The MLE for the DoA, azimuth and elevation angles, in the
single-source case can be given as the solution to the following
optimization problem:

(‘ﬁvé):arg rrglax{aH(‘Paevfc:Uz:Ts) 1i‘yy a(@ve:.fcvvvas)}- (14)
@,

To solve for (p,0), a two-dimensional grid search is used
to roughly estimate the maximum of the likelihood function,

and the Nelder-Mead optimization method [8] is applied for
refinement.

First, an initial coarse grid search is performed for ¢ ranging
from 0° to 180° and for # ranging from 90° to 120°, using
a resolution of 1° in both cases. These initial coarse searches
provide estimates of angles, which are subsequently refined
using the Nelder—-Mead method, with a tolerance of 10~2 for
angle parameters and 10~ for the cost function, restricted
to a maximum iteration limit of 500. In addition to that,
a penalty function terminates the optimization if the angle
variation exceeds 5°.

V. MODELING ERRORS

Real-world systems are subject to imperfections that are
not present in the ideal signal model. We analyze the impact
of three primary sources of error: navigation inaccuracies,
sampling rate deviations, and frequency offsets.

A. Navigation errors

Real airborne trajectories differ from the ideal platform mo-
tion due to inertial navigation drift, Global Navigation Satellite
Systems (GNSS) measurement inaccuracies, or unexpected
velocity changes:

o Velocity Errors: A mismatch between the assumed ve-
locity and the true velocity v, alters the inter-sampling
distance A = v, T, which is a critical parameter in the
steering vector. This introduces a cumulative phase error
across the synthetic aperture.

We modeled this as a deterministic bias, where an incorrect
velocity is used in the steering vector of the estimator, while
the simulated data is generated with the true velocity.

B. Sample rate Mismatch

A mismatch in the sampling rate, Ty, directly affects the
calculation of the inter-sampling distance A, similar to a
velocity error. If the estimator assumes a sampling period 77
while the true period is T, the assumed position of each
virtual element will be incorrect, leading to phase errors in
the steering vector. This is modeled as a deterministic bias,
analogous to the velocity error.

C. Frequency Offsets

In addition to navigation imperfections, local-oscillator
(LO) instability introduces a frequency offset, foi. This offset
originates from the stability limitations of the system’s master
reference oscillator, which is typically specified in parts-per-
million (ppm). The absolute frequency offset at a given carrier
frequency, f., can be related to the oscillator’s stability, Sppm,
as:

fof‘f = Sppm X 1076 X fc~ (15)

The phase of the received signal is then impacted by this offset,
which modifies the steering vector via the phase term:

On =~ 2T (fc + fof‘f) Tns

where 7, is the nominal delay. Even small offsets can accu-
mulate over the synthetic aperture, degrading the accuracy of
the DoA estimates if not accounted for.

(16)



VI. SIMULATIONS AND ANALYSIS

This section presents the results of Monte Carlo simulations,
based on 10,000 independent runs, to evaluate the performance
of the dual-antenna synthetic-aperture DoA estimator. The
simulations adhere to the scenario parameters outlined in
Table 1. In our global coordinate system, the azimuth angle,
, is measured from the z-axis (0°-180°), and the elevation
angle, 0, is measured from the z-axis (0°-180°). To facilitate
analysis relative to the array’s orientation, we re-center both
angles around the virtual antenna boresight:

Pant = P — 900, eant = 900 — 6. (17)

A. Error-Free Measurements

We first analyze the estimator’s performance assuming ideal
measurements, with results evaluated at an SNR of 0 dB.
Figure 2 presents the Root-Mean-Square (RMS) azimuth error
for various combinations of virtual array size () and snapshot
count (K). Several key observations emerge:

« Azimuth-Dependent Performance: For short synthetic
apertures, the MLE frequently fails to converge to the true
angle, often producing estimates at the boundary of the
FoV. To prevent such outliers from skewing the results,
our algorithm constrains the estimate to @, = 0° in these
non-convergent cases. This constraint is responsible for the
"ramp" effect seen in the RMS error, as estimates across the
azimuth range are consistently pulled toward an incorrect
angle.

« Sample-Budget Trade-Off: For a fixed total sample budget
of 2000 (Q x K), increasing the virtual-array size () yields
greater performance gains than increasing the number of
snapshots K. This highlights the importance of a longer
aperture for robust estimation.

« Virtual Aperture Size: As () increases, estimation accuracy
remarkably improves within the +60° boresight region com-
pared to angles at the periphery. The error profile transitions
from the non-convergent ramp seen at low () values to a flat
"plateau,” a behavior that becomes distinct for ¢ > 100.
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Fig. 2: RMS azimuth error for different synthetic aperture sizes
as given in Table IL

In contrast, the RMS error for the elevation estimate, éam, is
shown in Fig. 3. The results demonstrate stable performance
across all (@, K) configurations, with no significant conver-
gence issues observed across the entire FoV.
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Fig. 3: RMS elevation error at SNR = 0dB.

Figure 4 further illustrates the azimuth DoA estimation per-
formance at different angles across a range of SNR values. The
synthetic aperture performs best near its boresight (@a == 0°),
with estimation error increasing as the true DoA approaches
the edges of the FoV. For azimuth angles within £60° of
boresight, the system achieves an RMS error below 10 degrees
for any SNR greater than 10 dB.
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Fig. 4: RMS azimuth error as a function of .

This angle-dependent performance stems from the intrinsic
nature of interferometric phase sensing. The estimator relies
on the unwrapped phase difference across the array to infer
the Angle-of-Arrival (AoA). The total phase accumulated by
a virtual array of @ elements, each spaced by A = v, Ty, is
given by:

@-1A
A
where A is the carrier wavelength. The sensitivity of the phase

to a change in the azimuth angle is its derivative:

@ (Q-1)A
d@ant =2m A

Figure 5 plots the total phase from (18) and its sensitivity from
(19). Near boresight (@an = 0°), the derivative is maximal,
meaning a small change in angle produces a large change in
phase, which enables reliable estimation. As the angle moves
toward the edges of the FoV (£90°), the derivative approaches
zero. Beyond approximately +60°, the sensitivity drops to half
its peak value, causing identical angular variations to produce
smaller phase changes and thus inherently degrading DoA
accuracy.

D(pun) = 2 c08(Bant) Sin(@ant), (18)

c0s(Gant) €os(Pant)- (19)
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Fig. 5: Total unwrapped phase and its sensitivity.

B. Measurements with Parameter Mismatches

We now assess the estimator’s robustness to parameter
mismatches between the simulation model and the estimator’s
assumptions.

Figure 6 shows the impact of a velocity mismatch on the
RMS azimuth error. The simulation assumes a true platform
velocity of 200 m/s, while the plot presents four curves
corresponding to velocities assumed by the estimator: 200 m/s
(no error), 150 m/s, 100 m/s, and 50 m/s. It is important to note
that the larger deviations are deliberately extreme conditions
designed to stress the signal model to its limits. In a practical
application, the velocity error from a modern navigation sys-
tem using GNSS Doppler measurements is expected to be well
under 0.1%, with typical accuracies on the order of 0.03 m/s
[9]. This makes the simulated test conditions far more severe
than those encountered in reality.

Remarkably, the results show that for moderate to high SNR
(above 20 dB), the RMS error remains below 5 degrees even
with the largest velocity mismatch, demonstrating the model’s
considerable resilience.

Monte Carlo: 10000 Trials
Pant = 0.0, Oant = 0.0°
Q@ =500, K = 2, Sample Rate = 200 MHz

RMSE Vel. = 50.0 m/s (A/X = 0.000022)
(Synthetic Aperture = 0.124750 mm)
RMSE Vel. = 100.0 m/s (A/X = 0.000043)
(Synthetic Aperture = 0.249500 mm)
RMSE Vel. = 150.0 m/s (A/X = 0.000065)
(Synthetic Aperture = 0.374250 mm)
RMSE Vel. = 200.0 m/s (A/A = 0.000087)
(Synthetic Aperture = 0.499000 mm)
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RMS Azimuth Error
S
o

0 5 10 15 20 25 30 35 40 45 50
SNR (dB)

Fig. 6: Impact of velocity mismatch on RMS azimuth error.

Figure 7, in turn, illustrates the performance degradation
from a mismatched sampling rate. The plot evaluates the
system’s performance when the true sampling rate is 200
MHz, while the estimator operates under the mismatched
assumptions of 150 MHz and 100 MHz, in addition to the
error-free case.

This error originates from the stability limitations of the
reference clock in the receivers. For the 26 GHz band, a system
would typically employ a mmWave front-end to downconvert

the signal before digitization by a high-performance receiver,
such as those in the National Instruments mmWave platform
[10]. The stability of the reference oscillators in such systems
is typically on the order of a few parts-per-million (ppm) [11].

Therefore, the simulated mismatches of 25% (150 MHz)
and 50% (100 MHz) are significant overestimations of real-
world error, chosen to rigorously test the model’s resilience.
The system proves to be less sensitive to this type of error
compared to velocity errors, with the RMS azimuth error
remaining below 10 degrees across the entire simulated SNR
range.
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Fig. 7: Impact of sampling rate mismatch.

Figure 8 shows the effect of a static frequency offset on esti-
mation performance. To characterize the estimator’s sensitivity
in a high-performance setting, this analysis simulates a range
of small offsets from 0 Hz to 5 kHz in 1 kHz increments.
Based on the model from Section V-C, all of these offsets
correspond to a very high oscillator stability (less than 0.2 ppm
at 26 GHz), which is achievable with high-grade hardware
platforms [10], [11]. The goal is to observe how gracefully
the system’s performance degrades with small, increasing-but-
realistic errors.

The results reveal a clear trend for moderate to high SNR.
A regular, nearly linear degradation in RMS azimuth error
is observed as the frequency offset increases from 0 to 5
kHz. In this regime, where the system is not limited by noise,
its performance is directly impacted by the deterministic bias
from the offset. Although the system’s short integration time
prevents catastrophic failure, the cumulative phase error grows
proportionally with fug, leading to this predictable increase in
estimation error.

To put this degradation into perspective, at the maximum
simulated offset of 5 kHz, the RMS error is approximately 8
degrees for SNR values above 20 dB and exceeds 14 degrees
at an SNR of 0 dB. In stark contrast, the baseline case with
no frequency offset maintains an RMS error close to zero in
the high-SNR regime. This significant impact highlights the
necessity of compensating for any known frequency offsets
within the signal model. Failing to do so can cause the
estimation error to grow rapidly, potentially rendering the DoA
estimates unusable for practical applications.

At low SNR (below 20 dB), a different behavior is observed.
The performance curves for all simulated offsets are clustered
closely together. While a slight increase in error is still



visible as the offset grows, the separation between the curves
is significantly reduced. This occurs because, in this noise-
limited regime, the estimator’s performance is dominated by
the high variance of the noise. The small, deterministic error
introduced by the frequency offset is largely obscured by this
much larger random error component. As the SNR improves,
the effect of the offset becomes progressively more apparent.
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— Monte Carlo: 10000 trials
e 18 Pant = 0.0°, Ouny = 0.0°
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Fig. 8: Impact of frequency offset.

Finally, Figure 9 evaluates the estimator’s performance in
a realistic scenario where multiple errors are present simulta-
neously. This test combines a 1% velocity mismatch, a 1%
sampling rate mismatch, and a 1000 Hz frequency offset.
These plausible error levels are less severe than the maximum
values tested in isolation, providing insight into the system’s
operational robustness.

As seen in the individual analyses (Fig.6 and Fig.7), the
chosen mismatches can have competing influences. A velocity
underestimation tends to increase RMS error, while the 1%
sampling rate mismatch was observed to have a counteracting
effect. The 1000 Hz frequency offset, in contrast, consistently
contributes to degradation. In this combined scenario, these
effects are superimposed, with the frequency offset being the
primary contributor to deterministic bias.

Despite these combined errors, the estimator remains effec-
tive. The RMS azimuth error stays below 2° for SNR values
above 20dB, where the bias becomes most apparent. At lower
SNR, particularly near 0dB, the performance curve converges
with the error-free case as random noise dominates and ob-
scures deterministic effects. Overall, this validates the model’s
resilience under plausible, combined real-world imperfections.
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Fig. 9: Impact of combined parameter mismatches.

VII. CONCLUSION

In this paper, we presented a comprehensive performance
analysis of a dual-antenna passive synthetic aperture DoA es-
timator under simulated real-world uncertainties. By modeling
errors in platform velocity, sampling rate, and local oscillator
frequency, we evaluated robustness and identified operational
limits through extensive Monte Carlo simulations.

Our findings confirm that the proposed low-SWaP system
provides accurate joint azimuth and elevation estimates, with
performance intrinsically linked to synthetic aperture length
and angle relative to boresight. Crucially, our robustness
analysis revealed two distinct behaviors. The estimator showed
remarkable resilience to extreme mismatches in velocity and
sampling rate, with simulated errors far exceeding those ex-
pected in practice. Conversely, sensitivity analysis for fre-
quency offset revealed predictable, regular degradation even
for small offsets. This highlights that while the system is
broadly robust, precise frequency synchronization or compen-
sation is essential for highest accuracy.

We also investigated the scenario where these errors oc-
cur concurrently, noting their potential to produce competing
effects. Even with this combination of uncertainties, the esti-
mator remained effective, validating its potential for practical
airborne applications. This work confirms that dual-antenna
passive synthetic aperture is a viable, resilient technique for
low-SWaP platforms, offering a clear path toward robust
passive sensing in realistic operational environments.
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